ข้ามไปเนื้อหา

เมทริกซ์ (คณิตศาสตร์)

จากวิกิพีเดีย สารานุกรมเสรี

ในคณิตศาสตร์ เมทริกซ์ หรือ เมตริกซ์ (อังกฤษ: matrix) คือตารางสี่เหลี่ยมที่แต่ละช่องบรรจุจำนวนหรือโครงสร้างทางคณิตศาสตร์ที่สามารถนำมาบวกและคูณกับตัวเลขได้

เราสามารถใช้เมทริกซ์แทนระบบสมการเชิงเส้น การแปลงเชิงเส้น และใช้เก็บข้อมูลที่ขึ้นกับตัวแปรต้นสองตัว เราสามารถบวก คูณ และแยกเมทริกซ์ออกเป็นผลคูณของเมทริกซ์ได้หลายรูปแบบ เมทริกซ์เป็นแนวความคิดที่มีความสำคัญยิ่งของพีชคณิตเชิงเส้น โดยทฤษฎีเมทริกซ์เป็นสาขาหนึ่งของพีชคณิตเชิงเส้นที่เน้นการศึกษาเมทริกซ์

มีการประยุกต์ใช้เมทริกซ์ในหลากหลายสาขาของวิทยาศาสตร์ ในสาขาฟิสิกส์มีการประยุกต์ใช้เมทริกซ์ในทุก ๆ แขนงของฟิสิกส์ที่มีอยู่ เช่น กลศาสตร์, ทัศนศาสตร์, แม่เหล็กไฟฟ้า, กลศาสตร์ควอนตัม หรือ ไฟฟ้ากระแสควอนตัม มีการใช้ทฤษฎีเมทริกซ์ในการศึกษาปรากฎการณ์ทางฟิสิกส์ เช่น การเคลื่อนที่ของวัตถุ ในสาขาวิทยาการคอมพิวเตอร์มีการประยุกต์ใช้เมทริกซ์ในการทำคอมพิวเตอร์กราฟฟิก โดยใช้สร้างโมเดล 3 มิติ เพื่อแสดงผลบนหน้าจอคอมพิวเตอร์ที่เป็น 2 มิติ

ในทางสถิติศาสตร์ มีการใช้เมทริกซ์เฟ้นสุ่มในการอธิบายถึงชุด (set) ของความน่าจะเป็น อาทิ มีการประยุกต์ใช้ร่วมกับอัลกอริทึมแบบ PageRank ในการเรียงหน้าผลการค้นหาในเว็บไซต์เสิร์จเอนจินอย่าง Google ในการศึกษาแคลคูลัส มีการใช้แคลคูลัสเชิงเมทริกซ์ (Matrix calculus) ในการวิเคราะห์อนุพันธ์ (Derivative) และฟังก์ชันเลขชี้กำลังในมิติที่อยู่สูงขึ้นไป (Higher dimension) นอกจากนั้นยังมีการประยุกต์ใช้เมทริกซ์ในการอธิบายระบบความสัมพันธ์ทางเศรษฐกิจ

นิยาม

[แก้]

เมทริกซ์ คือกลุ่มของจำนวนหรือสมาชิกของริงใดๆ เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส กล่าวคือเรียงเป็นแถวในแนวนอน และเรียงเป็นแถวในแนวตั้ง เรามักเขียนเมทริกซ์เป็นตารางที่ไม่มีเส้นแบ่งและเขียนวงเล็บคร่อมตารางไว้ (ไม่ว่าจะเป็นวงเล็บโค้งหรือวงเล็บเหลี่ยม) เช่น

เราเรียกแถวในแนวนอนของเมทริกซ์ว่า แถว เรียกแถวในแนวตั้งของเมทริกซ์ว่า หลัก และเรียกจำนวนแต่ละจำนวนเในเมทริกซ์ว่า สมาชิก ของเมทริกซ์ การกล่าวถึงสมาชิกของเมทริกซ์ จะต้องระบุตำแหน่งให้ถูกต้อง เช่น จากตัวอย่างข้างบน

สมาชิกที่อยู่ในแถวที่ 2 หลักที่ 3 คือเลข 4
สมาชิกที่อยู่ในแถวที่ 2 หลักที่ 2 คือเลข 15
สมาชิกที่อยู่ในแถวที่ 3 หลักที่ 1 คือเลข 5

เราเรียกเมทริกซ์ที่มี แถว และ หลัก เรียกว่า เมทริกซ์ เราเรียกจำนวน และ ว่า มิติ หรือ ขนาด ของเมทริกซ์

เราใช้สัญลักษณ์ เพื่อหมายถึง เมทริกซ์ ซึ่งมี แถว และ หลัก โดยที่ (หรือ ) หมายถึง สมาชิกที่อยู่ในตำแหน่ง แถว และ หลัก ของเมทริกซ์

การกระทำระหว่างเมทริกซ์

[แก้]

การบวก

[แก้]

ให้ และ เป็นเมทริกซ์ที่มีขนาดเท่ากันสองเมทริกซ์ เราสามารถนิยาม ผลรวม หรือ ผลบวก ว่าเป็นเมทริกซ์ขนาด ที่คำนวณโดยการบวกสมาชิกที่มีตำแหน่งตรงกัน กล่าวคือ หาก แล้ว ยกตัวอย่างเช่น

การบวกเมทริกซ์อีกแบบหนึ่งที่เป็นที่นิยมน้อยกว่าคือการบวกตรง

การคูณด้วยสเกลาร์

[แก้]

กำหนดเมทริกซ์ และจำนวน เราสามารถนิยาม ผลคูณสเกลาร์ ว่าเป็นเมทริกซ์ขนาด ที่คำนวณโดยการนำ ไปคูณสมาชิกแต่ละตัวของ กล่าวคือ หาก แล้ว ยกตัวอย่างเช่น

จะเห็นว่า ปฏิบัติการทั้งสองข้างต้น (การบวกและการคูณด้วยสเกลาร์) ช่วยให้เราสามารถมองเมทริกซ์ขนาด ว่าเป็นเวกเตอร์ที่มีมิติ ด้วยเหตุนี้ เซตของเมทริกซ์ที่มีขนาดเท่ากับจึงเป็นปริภูมิเวกเตอร์ชนิดหนึ่ง

การคูณ

[แก้]

ถ้า และ เป็นเมทริกซ์สองเมทริกซ์โดยที่จำนวนหลักของ เท่ากับจำนวนแถวของ แล้ว เราสามารถนิยาม ผลคูณ ว่าเป็นเมทริกซ์ โดยที่

กล่าวคือสมาชิกในแถว หลัก ของผลคูณ คำนวณได้จากการนำสมาชิกของหลัก ของ และสมาชิกของคอลัมน์ ในตำแหน่ง "เดียวกัน" มาคูณกัน แล้วนำผลคูณทั้ง ผลคูณนั้นมาบวกกัน

การคูณนี้อาจทำให้เข้าใจได้ง่ายขึ้นถ้ามองเมทริกซ์เป็นjเวกเตอร์ของเวกเตอร์ โดยถ้าเราให้ เป็นเวกเตอร์ที่มีสมาชิกเป็นสมาชิกในแถว ของ และให้ เป็นเวกเตอร์ที่มีสมาชิกเป็นสมาชิกในหลัก ของ แล้ว เราจะได้ว่า เมื่อ คือผลคูณจุดของ และ เช่น

ให้ และ
แล้ว

และ

การคูณเมทริกซ์มีสมบัติต่อไปนี้

  • สมบัติการเปลี่ยนหมู่: สำหรับเมทริกซ์ ขนาด , ขนาด , และ ขนาด ใดๆ ("สมบัติการเปลี่ยนหมู่")
  • สมบัติการแจกแจงทางขวา: สำหรับเมทริกซ์ และ ขนาด และ ขนาด ใดๆ
  • สมบัติการแจกแจงทางซ้าย: สำหรับเมทริกซ์ และ ขนาด และ ขนาด ใดๆ

คำเตือน: การคูณเมทริกซ์นั้นไม่เหมือนกับการคูณจำนวนโดยทั่วไป เนื่องจากไม่มีสมบัติสลับที่ กล่าวคือ สำหรับเมทริกซ์ ขนาด และ ขนาด ใดๆ

  • ถ้า แล้ว ผลคูณ ไม่มีนิยาม
  • แม้ แต่ถ้า แล้ว เป็นเมทริกซ์ขนาด ส่วน เป็นเมทริกซ์ขนาด ผลคูณทั้งสองจึงมีค่าไม่เท่ากันอย่างเห็นได้ชัด
  • แม้ แต่ส่วนมากแล้ว มักจะมีค่าไม่เท่ากับ ยกตัวอย่างเช่น

เรากล่าวว่าเมทริกซ์ แอนติคอมมิวต์ (anticommute) กับเมทริกซ์ ถ้า เมทริกซ์ที่แอนติคอมมิวต์ซึ่งกันและกันมีความสำคัญมากในการเป็นตัวแทนของพีชคณิตลีและพีชคณิตคลิฟฟอร์ด

ข้อสังเกต i = แถว หรือ row และ j = แถวตั้ง หรือ column

การสลับเปลี่ยน

[แก้]

เมทริกซ์สลับเปลี่ยนคือเมทริกซ์ที่ได้จากการสลับสมาชิก จากแถวเป็นหลัก และจากหลักเป็นแถว ของเมทริกซ์ต้นแบบ เมทริกซ์สลับเปลี่ยนของของเมทริกซ์ A ขนาด m × n คือ AT ขนาด n × m ( หรือเขียนอยู่ในรูปแบบ Atr, หรือ tA, หรือ A' ) ซึ่ง AT[ i, j ] = A[ j, i ] ยกตัวอย่างเช่น

เมทริกซ์จัตุรัส

[แก้]

เมทริกซ์จัตุรัส คือเมทริกซ์ที่มีขนาดแถวและหลักเท่ากัน โดยเขียนอยู่ในรูปเมทริกซ์ขนาด n × n ยกเว้น n = 1

เมทริกซ์ที่มีลักษณะพิเศษ

[แก้]
  • เมทริกซ์เอกลักษณ์ หรือ เมทริกซ์หน่วย In ขนาด n คือเมทริกซ์ขนาด n × n ที่มีตัวเลขบนเส้นทแยงมุมเป็น 1 ซึ่งสมมติให้เส้นทแยงมุมนั้นลากจากสมาชิกบนซ้ายไปยังสมาชิกขวาล่าง (เฉียงลง) ส่วนสมาชิกที่เหลือเป็น 0 ทั้งหมด มีคุณสมบัติ MIn = M และ InN =  N สำหรับทุกๆเมทริกซ์ M ขนาด m × n และเมทริกซ์ N ขนาด n × k เช่นเมื่อ n = 3:
  • เมทริกซ์สมมาตร คือเมทริกซ์จัตุรัสที่เมื่อสลับเปลี่ยน (transpose) แล้วจะได้ผลลัพธ์เป็นเมทริกซ์ตัวเอง นั่นก็คือ หรือ สำหรับทุกดัชนีที่ i และ j
  • เมทริกซ์สมมาตรเสมือน คือเมทริกซ์จัตุรัสที่เมื่อสลับเปลี่ยน (transpose) แล้วจะได้ผลลัพธ์เป็นเมทริกซ์ที่สมาชิกทุกตัวมีเครื่องหมายตรงข้ามจากเดิม นั่นคือ หรือ สำหรับทุกดัชนีที่ i และ j
  • เมทริกซ์เอร์มีเชียนคือเมทริกซ์จัตุรัสที่มีสมาชิกเป็นจำนวนเชิงซ้อน และเมทริกซ์สลับเปลี่ยนสังยุค (conjugate transpose) ของเมทริกซ์นั้นเท่ากับตัวเดิม นั่นหมายความว่าสมาชิกในแถวที่ i หลักที่ j กับสมาชิกในแถวที่ j หลักที่ i จะต้องเป็นสังยุคซึ่งกันและกัน ดังนี้ หรือเขียนแทนด้วยการสลับเปลี่ยนสังยุคของเมทริกซ์ จะได้ว่า
  • เมทริกซ์โทพลิทซ์ คือเมทริกซ์จัตุรัสที่มีสมาชิกในแนวเส้นทแยงมุมหลักเป็นค่าเดียวกัน และแนวขนานเส้นทแยงมุมหลักเป็นค่าเดียวกันในแต่ละแนว นั่นคือ

อ้างอิง

[แก้]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy