Fog for 5G and IoT
By Mung Chiang
()
About this ebook
The book examines how Fog will change the information technology industry in the next decade. Fog distributes the services of computation, communication, control and storage closer to the edge, access and users. As a computing and networking architecture, Fog enables key applications in wireless 5G, the Internet of Things, and big data. The authors cover the fundamental tradeoffs to major applications of fog. The book chapters are designed to motivate a transition from the current cloud architectures to the Fog (Chapter 1), and the necessary architectural components to support such a transition (Chapters 2-6). The rest of the book (Chapters 7-xxx) are dedicated to reviewing the various 5G and IoT applications that will benefit from Fog networking. This volume is edited by pioneers in Fog and includes contributions by active researchers in the field.
- Covers fog technologies and describes the interaction between fog and cloud
- Presents a view of fog and IoT (encompassing ubiquitous computing) that combines the aspects of both industry and academia
- Discusses the various architectural and design challenges in coordinating the interactions between M2M, D2D and fog technologies
- "Fog for 5G and IoT" serves as an introduction to the evolving Fog architecture, compiling work from different areas that collectively form this paradigm
Related to Fog for 5G and IoT
Titles in the series (10)
Digital Signal Processing Techniques and Applications in Radar Image Processing Rating: 0 out of 5 stars0 ratingsThe Fabric of Mobile Services: Software Paradigms and Business Demands Rating: 0 out of 5 stars0 ratingsWiFi, WiMAX, and LTE Multi-hop Mesh Networks: Basic Communication Protocols and Application Areas Rating: 0 out of 5 stars0 ratingsFundamentals of Wireless Communication Engineering Technologies Rating: 4 out of 5 stars4/5Smart Data Pricing Rating: 0 out of 5 stars0 ratingsVehicle Safety Communications: Protocols, Security, and Privacy Rating: 0 out of 5 stars0 ratingsFog for 5G and IoT Rating: 0 out of 5 stars0 ratingsDigital Signal Processing for RFID Rating: 0 out of 5 stars0 ratings
Related ebooks
Internet of Things: Architectures, Protocols and Standards Rating: 0 out of 5 stars0 ratingsBackhauling / Fronthauling for Future Wireless Systems Rating: 0 out of 5 stars0 ratingsFundamentals of 5G Mobile Networks Rating: 0 out of 5 stars0 ratingsTowards 5G: Applications, Requirements and Candidate Technologies Rating: 0 out of 5 stars0 ratingsDistibuted Systems: Design and Algorithms Rating: 0 out of 5 stars0 ratingsSecure Connected Objects Rating: 0 out of 5 stars0 ratingsSoftware Defined Mobile Networks (SDMN): Beyond LTE Network Architecture Rating: 0 out of 5 stars0 ratingsMobile and Wireless Networks Rating: 0 out of 5 stars0 ratingsTransportation and Power Grid in Smart Cities: Communication Networks and Services Rating: 0 out of 5 stars0 ratingsNetworking Programming with C++: Build Efficient Communication Systems Rating: 0 out of 5 stars0 ratingsSocial Network Analysis with Applications Rating: 0 out of 5 stars0 ratingsWireless Security Architecture: Designing and Maintaining Secure Wireless for Enterprise Rating: 0 out of 5 stars0 ratingsEvent-Based Neuromorphic Systems Rating: 0 out of 5 stars0 ratingsAdvanced Wireless Networks: Technology and Business Models Rating: 0 out of 5 stars0 ratingsSoftware Networks: Virtualization, SDN, 5G and Security Rating: 0 out of 5 stars0 ratingsEvolutionary Algorithms for Mobile Ad Hoc Networks Rating: 0 out of 5 stars0 ratingsFuture Trends in Microelectronics: Journey into the Unknown Rating: 1 out of 5 stars1/5System Design for Telecommunication Gateways Rating: 0 out of 5 stars0 ratingsThe Effects of Traffic Structure on Application and Network Performance Rating: 0 out of 5 stars0 ratings5G for the Connected World Rating: 0 out of 5 stars0 ratingsSocial Systems Engineering: The Design of Complexity Rating: 0 out of 5 stars0 ratingsFundamentals of Network Planning and Optimisation 2G/3G/4G: Evolution to 5G Rating: 0 out of 5 stars0 ratingsUbiquitous Computing: Smart Devices, Environments and Interactions Rating: 0 out of 5 stars0 ratingsWireless Network Simulation: A Guide using Ad Hoc Networks and the ns-3 Simulator Rating: 0 out of 5 stars0 ratingsUltra-Dense Networks for 5G and Beyond: Modelling, Analysis, and Applications Rating: 0 out of 5 stars0 ratingsA SECURE DATA AGGREGATION TECHNIQUE IN WIRELESS SENSOR NETWORK Rating: 0 out of 5 stars0 ratingsModeling and Dimensioning of Mobile Wireless Networks: From GSM to LTE Rating: 0 out of 5 stars0 ratingsFundamentals of Big Data Network Analysis for Research and Industry Rating: 0 out of 5 stars0 ratingsAdvanced Chipless RFID: MIMO-Based Imaging at 60 GHz - ML Detection Rating: 0 out of 5 stars0 ratings5G Explained: Security and Deployment of Advanced Mobile Communications Rating: 0 out of 5 stars0 ratings
Telecommunications For You
Digital Filmmaking for Beginners A Practical Guide to Video Production Rating: 0 out of 5 stars0 ratingsiPhone Unlocked Rating: 0 out of 5 stars0 ratingsTor and the Dark Art of Anonymity Rating: 5 out of 5 stars5/5Make Your Smartphone 007 Smart Rating: 4 out of 5 stars4/5The TAB Guide to DIY Welding: Hands-on Projects for Hobbyists, Handymen, and Artists Rating: 0 out of 5 stars0 ratingsPhysiology Demystified Rating: 0 out of 5 stars0 ratingsMath Word Problems Demystified 2/E Rating: 3 out of 5 stars3/5Codes and Ciphers - A History of Cryptography Rating: 4 out of 5 stars4/5Teardowns: Learn How Electronics Work by Taking Them Apart Rating: 0 out of 5 stars0 ratingsMedical Charting Demystified Rating: 2 out of 5 stars2/5Stop Scrolling: 30 Days to Healthy Screen Time Habits (Without Throwing Your Phone Away): 30 Day Expert Series Rating: 0 out of 5 stars0 ratingsCodes and Ciphers Rating: 5 out of 5 stars5/5The Hello Girls: America’s First Women Soldiers Rating: 4 out of 5 stars4/5iPhone 16 Pro Max User Manual: The Complete Step-By-Step Guide to Maximize your New iPhone 16 Pro Max and iOS 18 Rating: 0 out of 5 stars0 ratingsBuilding Confidence Using Your iPhone: Book I — THE ULTIMATE GUIDE Rating: 0 out of 5 stars0 ratings101 Spy Gadgets for the Evil Genius 2/E Rating: 4 out of 5 stars4/5A Beginner's Guide to Ham Radio Rating: 0 out of 5 stars0 ratingsLinear Algebra Demystified Rating: 0 out of 5 stars0 ratingsVitamins and Minerals Demystified Rating: 0 out of 5 stars0 ratingsPsychology Demystified Rating: 3 out of 5 stars3/5Virtual Selling: How to Build Relationships, Differentiate, and Win Sales Remotely Rating: 4 out of 5 stars4/5130 Work from Home Ideas Rating: 3 out of 5 stars3/5Medical Terminology Demystified Rating: 4 out of 5 stars4/5Wireless and Mobile Hacking and Sniffing Techniques Rating: 0 out of 5 stars0 ratingsProgramming Amateur Radios with CHIRP: Amateur Radio for Beginners, #6 Rating: 0 out of 5 stars0 ratings15 Dangerously Mad Projects for the Evil Genius Rating: 4 out of 5 stars4/5Evaluation of Some Android Emulators and Installation of Android OS on Virtualbox and VMware Rating: 0 out of 5 stars0 ratingsPre-Algebra DeMYSTiFieD, Second Edition Rating: 0 out of 5 stars0 ratingsElectricity Demystified, Second Edition Rating: 2 out of 5 stars2/5
Reviews for Fog for 5G and IoT
0 ratings0 reviews
Book preview
Fog for 5G and IoT - Mung Chiang
Introduction
BHARATH BALASUBRAMANIAN,¹ MUNG CHIANG,² and FLAVIO BONOMI³
¹ ATT Labs Research, Bedminster, NJ, USA
² EDGE Labs, Princeton University, Princeton, NJ, USA
³ Nebbiolo Technologies, Inc., Milpitas, CA, USA
The past 15 years have seen the rise of the cloud, along with rapid increase in Internet backbone traffic and more sophisticated cellular core networks. There are three different types of clouds: (i) data centers, (ii) backbone IP networks, and (iii) cellular core networks, responsible for computation, storage, communication, and network management. Now the functions of these three types of clouds are descending to be among or near the end users, as the fog.
Empowered by the latest chips, radios, and sensors, the edge devices today are capable of performing complex functions including computation, storage, sensing, and network management. In this book, we explore the evolving notion of the fog architecture that incorporates networking, computing, and storage.
Architecture is about the division of labor in modularization: who does what, at what timescale, and how to glue them back together. The division of labor between layers, between control plane and data plane, and between cloud and fog [1] in turn supports various application domains. We take the following as a working definition of the fog architecture: it is an architecture for the cloud‐to‐things (C2T) continuum that uses one or a collaborative multitude of end‐user clients or near‐user edge devices to carry out a substantial amount of storage, communication, and control, configuration, measurement, and management. Engineering artifacts that may use the fog architecture include 5G, home/personal networking, embedded AI, and the Internet of things (IoT) [2].
In Figure I.1, we highlight that fog can refer to an architecture for computing, storage, control, or communication network, and that as a network architecture it may support a variety of applications. We contrast between the fog architecture and the current practice of the cloud along the following three dimensions:
Carry out a substantial amount of storage at or near the end user (rather than stored primarily in large‐scale data centers).
Carry out a substantial amount of communication at or near the end user (rather than all routed through the backbone network).
Carry out a substantial amount of computing and management, including network measurement, control, and configuration, at or near the end user (rather than controlled primarily by gateways such as those in the LTE core).
Figure I.1 Fog architectures and applications. Supported by such architectures.
Why would we be interested in the fog view now? There are four main reasons summarized as CEAL. Many examples in recent publications, across mobile and landline, and from physical layer beamforming to application layer edge analytics have started leveraging these advantages [3–8]:
Cognition: Awareness of Client‐Centric Objectives. Following the end‐to‐end principle, some of the applications can be best enabled by knowing the requirements on the clients. This is especially true when privacy and reliability cannot be trusted in the cloud or when security is enhanced by shortening the extent over which communication is carried out.
Efficiency: Pooling of Local Resources. There are typically hundreds of gigabytes sitting idle on tablets, laptops, and set‐top boxes in a household every evening, across a table in a conference room, or among the passengers of a public transit system. Similarly, idle processing power, sensing ability, and wireless connectivity on the edge may be pooled within a fog network.
Agility: Rapid Innovation and Affordable Scaling. It is usually much faster and cheaper to experiment with client and edge devices. Rather than waiting for vendors of large boxes inside the network to adopt an innovation, in the fog world a small team may take advantages of smartphone API and SDK, the proliferation of mobile apps, and offer a networking service through its own API.
Latency: Real‐Time Processing and Cyber–Physical System Control. Edge data analytics, as well as the actions it enables through control loops, often have stringent time requirement and can only be carried out on the edge or the things
, here and now. This is particularly essential for Tactile Internet: the vision of millisecond reaction time on networks that enable virtual–reality‐type interfaces between humans and devices.
We further elaborate on the previous potential advantages of fog. Client and edge devices have increasing strength and capabilities. For instance, the original iPhone had a single core 412 MHz ARM processor with 128 MB RAM and 8GB storage space. The iPhone 5S on the other hand carries a dual‐core 1.3 GHz Apple A7 processor with 1GB RAM, 64 GB storage space, and enhanced GPU capabilities. Intel’s mobile chip Atom and Nvidia’s Tegra too promise near similar specifications. The increase in strength and capabilities implies complex functionality such as CPU/GPU intensive gaming, powerful location/context tracking sensors, and enhanced storage. Further, as suggested in [9], these interconnected edge devices will play a crucial role in orchestrating the IoT. Edge devices including mobile phones and wearable devices use a rich variety of sensors including gyroscopes, accelerometers, and odometers to monitor the environment around them. This enables the crucial notion of exploiting context both personal in terms of location and physical/psychological characteristics and context in the communal sense of how devices are interacting with other devices around them.
As the need for cloud‐based services increases, the amount of data traffic generated in the core networks is increasing at an alarming rate. Cisco predicts that cloud traffic will increase almost four to five times over the next 5 years [10]. Further, they predict that cloud IP traffic will account for nearly two‐thirds of all data center traffic by 2017. Can the fog alleviate some of this by satisfying application needs locally? For example, can part of cloud storage be moved closer to the user with edge/client devices acting as micro‐data centers? Can videos be cached efficiently at the edge devices to reduce accesses to the cloud? Or more broadly, can edge devices perform an active role in orchestrating both data plane‐based cloud services and control plane‐based core network services?
Accesses to the cloud often span geographically distant entities with round‐trip times of nearly 150–200 ms. Access latency is a crucial factor in the end‐user experience with studies showing that a 20% decrease in RTTs results in a 15% decrease in page load time [11]. A significant way to decrease the RTT for content access is to place as much of the content physically close to the end user as possible. While decreasing latency is beneficial to all services, it may be a necessity for many services in the future. For example, services involving augmented reality applications may not tolerate latencies of more than 10–20 ms [12]. Hence, any computation/processing for these kind of services need to be performed locally. Fog services may play a significant part in addressing this challenge.
The fog R&D will leverage past experience in sensor networks, peer‐to‐peer systems, and mobile ad hoc networks while incorporating the latest advances in devices, systems, and data science to reshape the balance of power
in the ecosystem between powerful data centers and the edge devices. Toward that end, this book serves as the first introduction to the evolving fog architecture, compiling work traversing many different areas that fit into this paradigm.
In this book, we will encounter many use cases and applications that in many ways are not necessarily new and revolutionary and have been conceived in the context of distributed computing, networking, and storage systems. Computing resources have been always distributed in homes, in factories, along roads and highways, in cities, and in their shopping centers. The field of pervasive or ubiquitous computing has been active for a long time. Networking has always deployed switches, routers, and middleboxes at the edge. Caching media and data at the edge has been fundamental to the evolution of Web services and video delivery.
As is typical of any emergent area of R & D, many of the themes in the fog architecture are not completely new and instead are evolved versions of accumulated transformations in the past decade or two:
Compared with peer‐to‐peer (P2P) networks in the mid‐2000s, fog is not just about content sharing (or data plane as a whole) but also network measurement, control and configuration, and service definition.
Compared with mobile ad hoc network (MANET) research a decade ago, we have much more powerful and diverse off‐the‐shelf edge devices and applications now, together with the structure/hierarchy that comes with cellular/broadband networks.
Compared with generic edge networking in the past, fog networking provides a new layer of meaning to the end‐to‐end principle: not only do edge devices optimize among themselves, but also they collectively measure and control the rest of the network.
Along with two other network architecture themes, ICN and SDN, each with a longer history, the fog is revisiting the foundation of how to think about and engineer networks, that is, how to optimize network functions: who does what and how to glue them back together:
Information‐Centric Networks. Redefine functions (to operate on digital objects rather than just bytes)
Software‐Defined Networks. Virtualize functions (through a centralized control plane)
Fog Networks. Relocate functions (closer to the end users along the C2T continuum)
While fog networks do not have to have any virtualization or to be information centric, one could also imagine an information‐centric, software‐defined fog network (since these three branches are not orthogonal).
With its adoption of the most modern concepts developed in the IT domain and at the same time with its need to satisfy the requirements of the operational technology (OT) domains, such as time‐sensitive and deterministic behaviors in networking, computing and storage, sensor and actuator support and aggregation, and sometimes even safety support, the fog is a perfect conduit for the highly promising convergence of IT and OT in many key IoT verticals. In this perspective, the fog not only builds on and incorporates many of the traditional relevant technologies from sensor and ad hoc network, ubiquitous computing, distributed storage, etc. but also manifests in a timely manner new and specific characteristics coming from the IT and OT convergence behind IoT.
As the cloud catalyzed, consolidated, and evolved a range of existing technologies and approaches, the fog is catalyzing, consolidating, and evolving a range of edge technologies and approaches in a creative and rich mix, at this special transition time into IoT. Complementing the swarm of endpoints and the cloud, the fog will enable the seamless deployment of distributed applications, responding to the needs of critical use cases in a broad array of verticals. For example, some of the early work on fog architecture and functionality was driven by specific applications in connected vehicle and transportation, smart grid, the support of distributed analytics, and the improvement of Web services and video delivery [9, 13, 14].
I.1 SUMMARY OF CHAPTERS
Following the above paragraphs, the chapters in this edited volume are divided into three broad sections. In the first four chapters, we describe work that presents techniques to enable communication and management of the devices in a fog network involving their interaction with the cloud, management of their bandwidth requirements, and prescriptions on how the edge devices can often work together to fulfill their requirements. The next natural step is to understand how to perform the two fundamental components of many applications on the edge: storage and computation. We focus on this aspect in the following three chapters. And finally, we focus on the applications that will be enabled on top of the fog infrastructure and the challenges in realizing them.
Communication and Management In the first chapter the authors present a unique edge computing framework, called ParaDrop, that allows developers to leverage one of the most stable and persistent computing resources in the end customer premises: the gateway (e.g., the Wi‐Fi access point or home set‐top box). Based on a platform that allows the deployment of containers on these edge devices, the authors show how interesting applications such as security cameras and environment sensors can be deployed on these devices. While the first chapter focuses on an operating system agnostic container‐based approach, the second chapter posits that the underlying operating system on these devices too should evolve to support fog computing and networking. In a broad analysis, the authors focus on four important aspects: why do these systems need to provide better properties to support the fog, where do they need to improve, what are the exact properties that need to be provided, and finally how can they provide these better properties?
To enable rich communication in the fog, bandwidth needs have to be addressed. Following the philosophy of fog networking, why can’t the power of edge devices be used to leverage this? In the second chapter, the authors present a home‐user‐based bandwidth management solution to cope with the growing demand for bandwidth, with a novel technique that puts more intelligence in both the home gateways and the end‐user devices. They show that using a two‐level system, one based on the gateways buying bandwidth
from the ISPs within a fixed budget driven by incentives and the other based on end‐user prioritization of applications, much better utilization of network bandwidth can be achieved.
The following chapter addresses this question from the point of view of peer‐to‐peer communication among devices. They present a game theory‐based mechanism that end‐user devices like tablets and cell phones can use to cooperate with one another and act as relays for each other’s network traffic, thereby boosting network capability. An important aspect of fog management and communication is that of addressing the potentially thousands and maybe even millions of fog–IoT devices.
In the final chapter, the author contends that traditional IP‐based addressing will not always work for field IoT devices working in a fog environment, interacting with cloud servers or among themselves. This is primarily due to factors such as device mobility, spatial density of devices, and gaps in coverage. As an alternative, they propose a technique of geographic addressing where communication protocols allow devices to specify the destination devices based on their geographic location rather than IP address.
Computation and Storage Following the first section of chapters on communication and management of fog devices, we move on to two important platform functions: storage and caching for video delivery in fog networks and techniques for fog computation. The first chapter in this section presents caching schemes for video on demand (VoD), especially to optimize the last wireless hop in video delivery. While most CDN‐based systems focus on caching at the edge of the network, the authors here focus on caching in edge devices such as Femto helper nodes (similar to Femto base stations) and the end‐user devices themselves.
The second chapter, on the other hand, shifts the focus from VoD to live streaming, a use case with very different requirements but similar potential uses of the fog paradigm. The authors discuss a technique through which the end‐user devices collaborate to deliver live streams to each other, operating as a wireless fog. They focus on a crucial problem in such systems—that of errors due to lossy wireless links—and present a store–recover–forward strategy for wireless multihop fog networks that combines traditional store and forward techniques with network coding.
In the final chapter of this section, we move from storage to general‐purpose computation in fog. Similar to other chapters in this book, the authors posit that mobile devices have now become far more powerful and can hence perform several computations locally, with carefully planned fog architectures. They focus on two such designs: femto cloud, in which they discuss a general purpose architecture of a computational platform for mobile devices, and Serendipity, in which they consider a more severe version of the same problem in which devices are highly mobile and often tasks need to be off‐loaded to one another.
Applications Having set the foundation with the previous section on the platform requirements and innovations, we finally move on to applications built on the fog architecture. In the first chapter in this section, the authors provide a close look at the challenges facing the connected car, an IoT use case that is increasingly prominent these days. In particular, they focus on the electrical architecture that will enable this application and describe how fog computing with its virtualization techniques, platform unification of several concerns such as security and management will help alleviate these challenges.
In the following chapter, the authors provide a detailed analysis of distributed stream processing systems and online learning frameworks with a view to building what they term a smarter planet. In their vision of smart planet, they envisage a world in which users are constantly gathering data from their surroundings, processing this data, performing meaningful analysis, and taking decisions based on this analysis. The main challenge however is that given the potentially huge number of low‐power sensors and the mobility of the users, all this data analysis needs to be heavily distributed through its life cycle. The combination of potent‐distributed learning frameworks and fog computing that will provide the platform capabilities for such frameworks can bring forth the vision of the smarter planet.
Finally, we end the book with a chapter on how fog computing can help address the crucial needs of security in IoT devices. The authors start with the question: what is so different about IoT security as opposed to standard enterprise security, and what needs to change? They then go on answering these questions and identify IoT concerns ranging from the incredibly large number of such devices to the need for keeping them regularly updated with regard to security information. Crucially, they focus on how the fog paradigm can help address many of these concerns by providing frameworks and platforms to alleviate the load on the IoT devices and perform functions such as endpoint authentication and security updates.
The electronic supplemental content to support use of this book is available online at https://booksupport.wiley.com
I.2 ACKNOWLEDGMENTS
This book would not have been possible without help from numerous people, and we wish to sincerely thank all of them.
In particular, Dr. Jiasi Chen, Dr. Michael Wang, Dr. Christopher Brinton, Dr. Srinivas Narayana, Dr. Zhe Huang, and Dr. Zhenming Liu provided valuable feedback on the individual chapters of the book. The publisher, John Wiley and Sons, made a thorough effort to get the book curated and published. We are grateful to the support from funding agencies of National Science Foundation under the fog research grants. Last but not the least, the book will ultimately stand on its contents, and we are grateful to all the chapter authors for their technical contributions and never‐ending enthusiasm in writing this book.
REFERENCES
1. Mung Chiang, Steven H. Low, A. Robert Calderbank, and John C. Doyle. Layering as optimization decomposition: A mathematical theory of network architectures. In Proceedings of the IEEE, volume 95, pages 255–312, January 2007.
2. Mung Chiang and Tuo Zhang, Fog and IoT: an overview of research opportunities. IEEE Journal of Internet of Things, 3(6), December 2016.
3. Abhijnan Chakraborty, Vishnu Navda, Venkata N. Padmanabhan, and Ramachandran Ramjee. Coordinating cellular background transfers using load sense. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, MobiCom ’13, pages 63–74, New York, NY, USA, 2013. ACM.
4. Ehsan Aryafar, Alireza Keshavarz‐Haddad, Michael Wang, and Mung Chiang. Rat selection games in hetnets. In INFOCOM, pages 998–1006 April 14–19, 2013. IEEE Turin, Italy.
5. Luca Canzian and Mihaela van der Schaar. Real‐time stream mining: Online knowledge extraction using classifier networks. IEEE Network, 29(5):10–16, 2015.
6. Jae Yoon Chung, Carlee Joe‐Wong, Sangtae Ha, James Won‐Ki Hong, and Mung Chiang. Cyrus: Towards client‐defined cloud storage. In Proceedings of the 10th European Conference on Computer Systems, EuroSys ’15, pages 17:1–17:16, New York, NY, USA, 2015. ACM.
7. Felix Ming Fai Wong, Carlee Joe‐Wong, Sangtae Ha, Zhenming Liu, and Mung Chiang. Mind your own bandwidth: An edge solution to peak‐hour broadband congestion. CoRR, abs/1312.7844, 2013.
8. Yongjiu Du, Ehsan Aryafar, Joseph Camp, and Mung Chiang. iBeam: Intelligent client‐side multi‐user beamforming in wireless networks. In 2014 IEEE Conference on Computer Communications, INFOCOM 2014, pages 817–825, Toronto, Canada, April 27–May 2, 2014. IEEE.
9. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.
10. Cisco Global Cloud Index: Forecast and Methodology. http://www.intercomms.net/issue‐21/pdfs/articles/cisco.pdf (accessed September 12, 2016).
11. Latency: The New Web Performance Bottleneck. https://www.igvita.com/2012/07/19/latency‐the‐new‐web‐performance‐bottleneck/(accessed September 12, 2016).
12. W. Pasman, Arjen Van Der Schaaf, R.L. Lagendijk, and Frederik W. Jansen. Low latency rendering and positioning for mobile augmented reality. In Proceedings Vision Modeling and Visualization ’99, pages 309–315, 1999.
13. Flavio Bonomi. Cloud and fog computing: Trade‐offs and applications. In EON‐2011 Workshop, at the International Symposium on Computer Architecture (ISCA 2011), San Jose, USA, June 4–8, 2011.
14. Xiaoqing Zhu, Douglas S. Chan, Hao Hu, Mythili S. Prabhu, Elango Ganesan, and Flavio Bonomi. Improving video performance with edge servers in the fog computing architecture. Intel Technology Journal 19(1):202–224, 2015.
PART I
Communication and Management of Fog
1
ParaDrop: An Edge Computing Platform in Home Gateways
SUMAN BANERJEE,¹ PENG LIU,¹,² ASHISH PATRO,¹ and DALE WILLIS¹
¹ Department of Computer Sciences, University of Wisconsin‐Madison, Madison, WI, USA
² Pennsylvania State University, State College, PA, USA
1.1 INTRODUCTION
The last decade has seen a rapid diversification of computing platforms, devices, and services. For example, desktops used to be the primary computing platform until the turn of the century. Since then, laptops and more recently handheld devices such as laptops and tablets have been widely adopted. Wearable devices and the Internet of things (IoT) are the latest trends in this space. This has also led to widespread adoption of the cloud
as a ubiquitous platform for supporting applications and services across these different devices.
Simultaneously, cloud computing platforms, such as Amazon EC2 and Google App Engine, have become a popular approach to provide ubiquitous access to services across different user devices. Third‐party developers have come to rely on cloud computing platforms to provide high quality services to their end users, since they are reliable, always on, and robust. Netflix and Dropbox are examples of popular cloud‐based services. Cloud services require developers to host services, applications, and data on off‐site data centers. But, due to application‐specific reasons, a growing number of high quality services restrict computational tasks to be colocated with the end user. For example, latency‐sensitive applications require the backend service to be located to a user’s current location. Over the years, a number of research threads have proposed that a better end‐user experience is possible if the computation is performed close to the end user. This is typically referred to as edge computing
and comes in various flavors including: cyber foraging [1], cloudlets [2], and more recently fog computing [3].
This chapter presents a unique edge computing framework, called ParaDrop, which allows developers to leverage one of the last bastions of persistent computing resources in the end customer premises: the gateway (e.g., the Wi‐Fi access point (AP) or home set‐top box). Using this platform, which has been fully implemented on commodity gateways, developers can design virtually isolated compute containers to provide a persistent computational presence in the proximity of the end user. The compute containers retain user state and also move with the users as the latter changes their points of attachment. We demonstrate the capabilities of this platform by demonstrating useful third‐party applications, which utilize the ParaDrop framework. The ParaDrop framework also allows for multitenancy through virtualization, dynamic installation through the developer API, and tight resource control through a managed policy design.
1.1.1 Enabling Multitenant Wireless Gateways and Applications through ParaDrop
A decade or two ago, the desktop computer was the only reliable computing platform within the home where third‐party applications could reliably and persistently run. However diverse mobile devices, such as smartphones and tablets, have deprecated the desktop computer since, and today persistent third‐party applications are often run in remote cloud‐based servers. While cloud‐based third‐party services have many advantages, the rise of edge computing concepts stems from the observation that many services can benefit from a persistent computing platform, right in the end‐user premises.
With end‐user devices going mobile, there is one remaining device that provides all the capabilities developers require for their services, as well as the proximity expected from an edge computational framework. The gateway—which could be a home Wi‐Fi AP or a cable set‐top box provided by a network operator—is a platform that is continuously on and due to its pervasiveness is a primary entry point into the end‐user premises for such third‐party services.
We want to push computation onto the home gateways (e.g., Wi‐Fi APs and cable set‐top boxes) for the following reasons:
The home gateways can handle it—modern home gateways are much more powerful than what they need to be for their networking workload. What is more if you are not running a Web server out of the house, your gateway sits dormant majority of the time (when no one is home using it).
Utilizing computational resources in the home gateway gives us a footprint within the home to devices that are starved for computational resources, namely, IoT devices. Using ParaDrop, developers can piggyback their IoT devices onto the AP without the need for cloud services OR a dedicated desktop!
Every household connected to the Internet by definition must contain an Internet gateway somewhere in the house. With these devices sitting around, we can use them to their full potential.
Pervasive Hardware: Our world is quickly moving toward households only having mobile devices (tablets and laptops) in the home that are not always on or always connected. Developers can no longer rely on pushing software into the home without also developing their own hardware too.
A Developer‐Centric Framework. In this chapter, we examine the requirements of services in order to build an edge computing platform, which enables developers to provide services to the end user in place of a cloud computing platform. A focus on edge computation would require developers to think differently about their application development process; however we believe there are many benefits to a distributed platform such as ParaDrop. The developer has remained our focus in the design and implementation of our platform. Thus, we have implemented ParaDrop to include a fully featured API for development, with a focus on a centrally managed framework. Through virtualization, ParaDrop enables each developer access to resources in a way as to completely isolate all services on the gateway. A tightly controlled resource policy has been developed, which allows fair performance between all services.
1.1.2 ParaDrop Capabilities
ParaDrop takes advantage of the fact that resources of the gateway are underutilized most of the time. Thus each service, referred to as a chute (as in parachute), borrows CPU time, unused memory, and extra disk space from the gateway. This allows vendors an unexplored opportunity to provide added value to their services through the close proximity footprint of the gateway.
Figure 1.1 shows system ParaDrop running on real hardware, the Wi‐Fi home gateway,
along with two services to motivate our platform: security camera
and environment sensors.
ParaDrop has been implemented on PC engines ALIX 2D2 single board computer running OpenWrt Barrier Breaker
on an AMD Geode 500 MHz processor with 256 MB of RAM. This low‐end hardware platform was chosen to showcase ParaDrop’s capabilities with existing gateway hardware.
Figure 1.1 The fully implemented ParaDrop platform on the Wi‐Fi home gateway, which shares its resources with two wireless devices including a security camera and environment sensor.
We have emulated two third‐party developers who have migrated their services to the ParaDrop platform to showcase the potential of ParaDrop. Each of these services contains a fully implemented set of applications to capture, process, store, and visualize the data from their wireless sensors within a virtually isolated environment. The first service is a wireless environmental sensor designed as part of the Emonix research platform [4], which we refer to as EnvSense.
The second service is a wireless security camera based on a commercially available D‐Link DCS 931L webcam, which we call SecCam.
Leveraging the ParaDrop platform, the two developer services allow us to motivate the following characteristics of ParaDrop:
Privacy. Many sensors and even webcams today rely on the cloud as the only storage mechanism for generated data. Leveraging the ParaDrop platform, the end user no longer must rely on cloud storage for the data generated by their private devices and instead can borrow disk space available in the gateway for such data.
Low Latency. Many simple processing tasks required by sensors are performed in the cloud today. By moving these simple processing tasks onto gateway hardware, one hop away from the sensor itself, a reliable low‐latency service can be implemented by the developer.
Proprietary Friendly. From a developer’s perspective, the cloud is the best option to deploy their proprietary software because it is under their complete control. Using ParaDrop, a developer can package up the same software binaries and deploy them within the gateway to execute in a virtualized environment, which is still under their complete control.
Local Networking Context. In the typical service implemented by a developer, the data is consumed only by the end user yet stored in the cloud. This requires data generated by a security camera in the home to travel out to a server somewhere in the Internet and upon the end user’s request travel back from this server into the end‐user device for viewing. Utilizing the ParaDrop platform, a developer can ensure that only data requested by the end user is transmitted through Internet paths to the end‐user device.
Internet Disconnectivity. Finally, as services become more heterogeneous, they will move away from simple nice to have
features into mission critical, life saving services. While generally accepted as unlikely, a disconnection from the Internet makes a cloud‐based sensor completely useless and is unacceptable for services such as health monitoring. In this case, a developer could leverage the always‐on nature of the gateway to process data from these sensors, even when the Internet seems to be down.
1.2 IMPLEMENTING SERVICES FOR THE PARADROP PLATFORM
The primary component of ParaDrop is the virtual machine called a chute (short for parachute) because the framework uses it to install services across different APs. Each developer can deploy many chutes (Figure 1.2) to their AP, thanks to a low‐overhead virtualization technology: Linux containers (LXC). These chutes allow for fully isolated use of computational resources on the AP. As you design and implement services on your AP, you can, and should, separate these services into unique chutes. Figure 1.3 shows an example chute configuration specified in the Chute.struct file.
Block diagram displaying a dashed line box of a “chute” installed on a ParaDrop-enabled access point with lines connecting rectangular boxes, oblong and cloud likes shapes with labels.Figure 1.2 The dashed box shows the block diagram representation of a chute
installed on a ParaDrop‐enabled access point. Each chute hosts a stand‐alone service and has its own network subnet.
Figure 1.3 An example Chute.struct file, which is used to specify the key configuration parameters of a chute that hosts a