Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference
Abstract
:1. Introduction
2. Materials and Methods
2.1. Empirical Dataset
- fatigue (F): Fatigue Severity Scale (FSS)
- general self-efficacy (S): General Self-Efficacy Scale (GSES)
- depression (D): Centre for Epidemiologic Studies Depression Scale (CES-D)
- metacognition of allostatic control (M): Sum of the subscales 3 (not worrying) and 8 (trusting) of the Multidimensional Assessment of Interoceptive Awareness ().
2.2. SCM of the ASE Theory
2.3. Statistical Analysis
2.3.1. Causal Structure of ASE Theory in the PBIHB Dataset
- (i)
- (ii)
- and
- (iii)
- and
2.3.2. Estimating the Average Causal Effect from M to F
2.3.3. Estimating the Average Causal Effect from F*S on D
3. Results
3.1. Raw Data
3.2. Results from the Statistical Analysis
3.2.1. Causal Structure of ASE Theory in the PBIHB Dataset
3.2.2. Estimating the Average Causal Effect from M to F
3.2.3. Estimating the Average Causal Effect from F*S to D
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
ASE | allostatic self-efficacy |
SCM | structural causal model |
DAG | directed acyclic graph |
ICD-10 | International Statistical Classification of Diseases and Related Health Problems, 10th revision |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
A | age |
G | gender |
M | metacognition of allostatic control |
F | fatigue |
S | general self-efficacy |
D | depression |
N | noise variable |
F*S | the interaction term between fatigue and general self-efficacy |
PBIHB | perception of breathing in the human brain |
TNU | Translational Neuromodeling Unit |
FSS | Fatigue Severity Scale |
GSES | General Self-Efficacy Scale |
CES-D | Centre for Epidemiologic Studies Depression Scale |
MAIA | Multidimensional Assessment of Interoceptive Awareness |
mutual information for conditional Gaussians | |
KCI | kernel conditional independence test |
GCM | generalized covariance measure |
DML | double/debiased machine learning |
VAS | valid adjustment set |
Appendix A. Definitions
Appendix A.1. Structural Causal Model
- structural equations which relate each variable to its parents and a noise variable via a function , such that , as well as a
- noise distribution of the noise variables .
Appendix A.2. Markov Condition
- (i)
- the global Markov property (MP) with respect to G if ∀ disjointA d-sep
- (ii)
- the local Markov property (MP) if
- (iii)
- the factorization property if is absolutely constant with respect to a product measure and
Appendix A.3. d-Separation
- (i)
- A path is blocked by ⇔∃ node with andOR ∃ node with andOR ∃ node with andOR ∃ node with and and
- (ii)
- , are d-connected given ⇔ s.t. ∃ path between X and Y that is not blocked
- (iii)
- if , are not d-connected, then they are d-separated. We sometimes write d-sep or
Appendix B. Estimating Causal Effects Using Covariate Adjustment
Appendix B.1. The ‘Propensity Score’ Method
Appendix B.2. Double/Debiased Machine Learning
Appendix C. Results from Estimating the Average Causal Effect from F*S to D
Estimation Method | Confidence Interval | t Value | p-Value | ||
---|---|---|---|---|---|
linear regression | 0.0281 | −0.191 | 0.247 | 0.257 | 0.6010 |
propensity score | 0.0142 | −0.151 | 0.180 | 0.172 | 0.5680 |
DML | −0.2051 | −0.476 | 0.066 | −1.482 | 0.0691 |
Estimation Method | Confidence Interval | t Value | p-Value | ||
---|---|---|---|---|---|
linear regression | 0.0671 | −0.122 | 0.257 | 0.711 | 0.7599 |
propensity score | 0.0337 | −0.159 | 0.227 | 0.350 | 0.6362 |
DML | 0.0153 | −0.283 | 0.314 | 0.100 | 0.5399 |
References
- Chaudhuri, A.; Behan, P.O. Fatigue in neurological disorders. Lancet 2004, 363, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Wessely, S. Chronic Fatigue: Symptom and Syndrome. Ann. Intern. Med. 2001, 134, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Fisk, J.D.; Ritvo, P.G.; Ross, L.; Haase, D.A.; Marrie, T.J.; Schlech, W.F. Measuring the Functional Impact of Fatigue: Initial Validation of the Fatigue Impact Scale. Clin. Infect. Dis. 1994, 18, S79–S83. [Google Scholar] [CrossRef]
- World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems: Tenth Revision; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Manjaly, Z.M.; Harrison, N.A.; Critchley, H.D.; Do, C.T.; Stefanics, G.; Wenderoth, N.; Lutterotti, A.; Müller, A.; Stephan, K.E. Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.E.; Manjaly, Z.M.; Mathys, C.D.; Weber, L.A.; Paliwal, S.; Gard, T.; Tittgemeyer, M.; Fleming, S.M.; Haker, H.; Seth, A.K.; et al. Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Front. Hum. Neurosci. 2016, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Petzschner, F.H.; Weber, L.A.; Gard, T.; Stephan, K.E. Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis. Biol. Psychiatry 2017, 82, 421–430. [Google Scholar] [CrossRef]
- Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. Biol. Sci. 2005, 360, 815–836. [Google Scholar] [CrossRef]
- Friston, K.J.; Daunizeau, J.; Kilner, J.; Kiebel, S.J. Action and behavior: A free-energy formulation. Biol. Cybern. 2010, 102, 227–260. [Google Scholar] [CrossRef] [PubMed]
- Nord, C.L.; Garfinkel, S.N. Interoceptive pathways to understand and treat mental health conditions. Trends Cogn. Sci. 2022, 26, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, S.S.; Adolphs, R.; Cameron, O.G.; Critchley, H.D.; Davenport, P.W.; Feinstein, J.S.; Feusner, J.D.; Garfinkel, S.N.; Lane, R.D.; Mehling, W.E.; et al. Interoception and Mental Health: A Roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K.; Suzuki, K.; Critchley, H.D. An interoceptive predictive coding model of conscious presence. Front. Psychol. 2012, 3, 395. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef]
- Pezzulo, G.; Rigoli, F.; Friston, K. Active Inference, homeostatic regulation and adaptive behavioural control. Prog. Neurobiol. 2015, 134, 17–35. [Google Scholar] [CrossRef]
- Ainley, V.; Apps, M.A.J.; Fotopoulou, A.; Tsakiris, M. ‘Bodily precision’: A predictive coding account of individual differences in interoceptive accuracy. Philos. Trans. R. Soc. Biol. Sci. 2016, 371, 20160003. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, B.; Heinzle, J.; Stephan, K.E. A computationally informed distinction of interoception and exteroception. Neurosci. Biobehav. Rev. 2024, 159, 105608. [Google Scholar] [CrossRef]
- Fleming, S.M.; Dolan, R.J. The neural basis of metacognitive ability. Philos. Trans. R. Soc. Biol. Sci. 2012, 367, 1338–1349. [Google Scholar] [CrossRef]
- Rouault, M.; Pereira, I.; Galioulline, H.; Fleming, S.M.; Stephan, K.E.; Manjaly, Z.M. Interoceptive and metacognitive facets of fatigue in multiple sclerosis. Eur. J. Neurosci. 2023, 58, 2603–2622. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R.; Heijnen, C.J.; Kavelaars, A.; Laye, S.; Capuron, L. The neuroimmune basis of fatigue. Trends Neurosci. 2014, 37, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, H.; Andlauer, T.F.M.; Korn, T.; Mühlau, M.; Henningsen, P.; Hemmer, B.; Ploner, M. Fatigue, depression, and pain in multiple sclerosis: How neuroinflammation translates into dysfunctional reward processing and anhedonic symptoms. Mult. Scler. J. 2022, 28, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Bollen, K.A. Structural Equations with Latent Variables; John Wiley & Sons: Oxford, UK, 1989; 514p. [Google Scholar] [CrossRef]
- Pearl, J. Causal Diagrams for Empirical Research. Biometrika 1995, 82, 669–688. [Google Scholar] [CrossRef]
- Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Weichwald, S.; Peters, J. Causality in Cognitive Neuroscience: Concepts, Challenges, and Distributional Robustness. J. Cogn. Neurosci. 2021, 33, 226–247. [Google Scholar] [CrossRef]
- Harrison, O.K.; Köchli, L.; Marino, S.; Luechinger, R.; Hennel, F.; Brand, K.; Hess, A.J.; Frässle, S.; Iglesias, S.; Vinckier, F.; et al. Interoception of breathing and its relationship with anxiety. Neuron 2021, 109, 4080–4093. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Janzing, D.; Schölkopf, B. Elements of Causal Inference: Foundations and Learning Algorithms; The MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Bongers, S.; Forré, P.; Peters, J.; Mooij, J.M. Foundations of structural causal models with cycles and latent variables. Ann. Stat. 2021, 49, 2885–2915. [Google Scholar] [CrossRef]
- Lauritzen, S.L.; Lauritzen, S.L. Graphical Models; Oxford Statistical Science Series; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Reichenbach, H. The Direction of Time; Dover Publications: Mineola, NY, USA, 1956. [Google Scholar]
- Lauritzen, S.L.; Dawid, A.P.; Larsen, B.N.; Leimer, H.G. Independence properties of directed markov fields. Networks 1990, 20, 491–505. [Google Scholar] [CrossRef]
- Scutari, M. Learning Bayesian Networks with the bnlearn R Package. J. Stat. Softw. 2010, 35, 1–22. [Google Scholar] [CrossRef]
- Shah, R.D.; Peters, J. The hardness of conditional independence testing and the generalised covariance measure. Ann. Stat. 2020, 48, 1514–1538. [Google Scholar] [CrossRef]
- Zhang, K.; Peters, J.; Janzing, D.; Schoelkopf, B. Kernel-based Conditional Independence Test and Application in Causal Discovery. arXiv 2012, arXiv:1202.3775. [Google Scholar] [CrossRef]
- Pearl, J. Belief networks revisited. Artif. Intell. 1993, 59, 49–56. [Google Scholar] [CrossRef]
- Robins, J. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math. Model. 1986, 7, 1393–1512. [Google Scholar] [CrossRef]
- Spirtes, P.; Glymour, C.N.; Scheines, R. Causation, Prediction, and Search; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econom. J. 2018, 21, C1–C68. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.; Dumas, G. The regulation of task performance: A trans-disciplinary review. Front. Psychol. 2016, 6, 1862. [Google Scholar] [CrossRef]
- Hesp, C.; Tschantz, A.; Millidge, B.; Ramstead, M.; Friston, K.; Smith, R. Sophisticated Affective Inference: Simulating Anticipatory Affective Dynamics of Imagining Future Events. In Active Inference: First International Workshop, IWAI 2020, Co-Located with ECML/PKDD 2020, Ghent, Belgium, September 14, 2020, Proceedings 1; Verbelen, T., Lanillos, P., Buckley, C.L., De Boom, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 179–186. [Google Scholar] [CrossRef]
- Murray, E.J.; Kunicki, Z. As the Wheel Turns: Causal Inference for Feedback Loops and Bidirectional Effects. 2022. Available online: https://osf.io/preprints/osf/9em5q (accessed on 12 December 2024).
- Daunizeau, J.; David, O.; Stephan, K.E. Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage 2011, 58, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Faes, L.; Nollo, G.; Stramaglia, S.; Marinazzo, D. Multiscale Granger causality. Phys. Rev. E 2017, 96, 042150. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.h.; Deyle, E.; Fogarty, M.; Munch, S. Detecting Causality in Complex Ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Friston, K.; Parr, T.; Zeidman, P.; Razi, A.; Flandin, G.; Daunizeau, J.; Hulme, O.; Billig, A.; Litvak, V.; Moran, R.; et al. Dynamic causal modelling of COVID-19 [version 2; peer review: 2 approved]. Wellcome Open Res. 2020, 5, 89. [Google Scholar] [CrossRef]
- Nosek, B.A.; Ebersole, C.R.; DeHaven, A.C.; Mellor, D.T. The preregistration revolution. Proc. Natl. Acad. Sci. USA 2018, 115, 2600–2606. [Google Scholar] [CrossRef]
- Nociti, V.; Losavio, F.A.; Gnoni, V.; Losurdo, A.; Testani, E.; Vollono, C.; Frisullo, G.; Brunetti, V.; Mirabella, M.; Della Marca, G. Sleep and fatigue in multiple sclerosis: A questionnaire-based, cross-sectional, cohort study. J. Neurol. Sci. 2017, 372, 387–392. [Google Scholar] [CrossRef]
- Runge, J. Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, PMLR, Lanzarote, Canary Islands, Spain, 9–11 April 2018; pp. 938–947. [Google Scholar]
- Robins, J.M.; Scheines, R.; Spirtes, P.; Wasserman, L. Uniform consistency in causal inference. Biometrika 2003, 90, 491–515. [Google Scholar] [CrossRef]
- Wal, W.M.v.d.; Geskus, R.B. ipw: An R Package for Inverse Probability Weighting. J. Stat. Softw. 2011, 43, 1–23. [Google Scholar] [CrossRef]
- Robins, J.M.; Hernan, M.A.; Brumback, B. Marginal Structural Models and Causal Inference in Epidemiology. Epidemiology 2000, 11, 550. [Google Scholar] [CrossRef]
- Bach, P.; Chernozhukov, V.; Kurz, M.S.; Spindler, M. DoubleML—An Object-Oriented Implementation of Double Machine Learning in R. arXiv 2023, arXiv:2103.09603. [Google Scholar] [CrossRef]
Hypothesis 1 | d-Separation Statement | (p-Value) | GCM (p-Value) | KCI (p-Value) |
---|---|---|---|---|
(i) | 22.044 * (1.634 × ) | 4.254 * (2.104 × ) | 26.451 * (5.194 × ) | |
(ii) | 24.167 * (5.652 × ) | −3.131 * (0.001743) | 8.513 * (0.001346) | |
16.883 * (0.000216) | −2.574 (0.010064) | 2.992 (0.022626) | ||
(iii) | 13.010 * (0.001496) | −3.390 * (0.000700) | 13.613 * (0.001279) | |
4.057 (0.131500) | −2.088 (0.036799) | 2.013 (0.118908) |
Estimation Method | Confidence Interval | t Value | p-Value | ||
---|---|---|---|---|---|
linear regression | −0.4845 * | −0.712 | −0.257 | −4.259 | 3.968 × |
propensity score | −0.4816 * | −0.717 | −0.246 | −4.092 | 6.689 × |
DML | −0.3872 * | −0.6481 | −0.1262 | −2.9082 | 0.0018 |
Estimation Method | Confidence Interval | t Value | p-Malue | ||
---|---|---|---|---|---|
linear regression | −0.3545 * | −0.610 | −0.099 | −2.785 | 0.0037 |
propensity score | −0.3775 * | −0.692 | −0.063 | −2.400 | 0.0098 |
DML | −0.2049 | −0.563 | 0.153 | −1.122 | 0.1309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hess, A.J.; von Werder, D.; Harrison, O.K.; Heinzle, J.; Stephan, K.E. Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference. Entropy 2024, 26, 1127. https://doi.org/10.3390/e26121127
Hess AJ, von Werder D, Harrison OK, Heinzle J, Stephan KE. Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference. Entropy. 2024; 26(12):1127. https://doi.org/10.3390/e26121127
Chicago/Turabian StyleHess, Alexander J., Dina von Werder, Olivia K. Harrison, Jakob Heinzle, and Klaas Enno Stephan. 2024. "Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference" Entropy 26, no. 12: 1127. https://doi.org/10.3390/e26121127
APA StyleHess, A. J., von Werder, D., Harrison, O. K., Heinzle, J., & Stephan, K. E. (2024). Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference. Entropy, 26(12), 1127. https://doi.org/10.3390/e26121127