YOLOv5s-BiPCNeXt, a Lightweight Model for Detecting Disease in Eggplant Leaves
Abstract
:1. Introduction
- Dataset Construction: A comprehensive dataset of eggplant leaf diseases was constructed, including images of healthy leaves, brown spot disease, and powdery mildew;
- Proposed Lightweight Model: A lightweight detection model, YOLOv5s-BiPCNeXt, was proposed. This model reduces network parameters and computational complexity while improving the detection accuracy of eggplant leaves. It effectively minimizes missed and false detections caused by complex backgrounds, enhancing the detection and localization of early small lesions of brown spot disease and powdery mildew;
- Comparative Performance: The YOLOv5s-BiPCNeXt model exhibits higher detection accuracy and speed, with lower parameter count and model size compared to five other popular deep learning models;
- Edge Device Deployment: The YOLOv5s-BiPCNeXt model was deployed on the Jetson Orin Nano edge detection device, with an average recognition speed of 26 FPS, meeting the requirements of real-time detection. This deployment method ensures the application of the model in actual natural scenes, can quickly and accurately detect eggplant leaf diseases, and improves the efficiency of disease management in agricultural production.
2. Materials and Methods
2.1. Data Acquisition
2.2. Image Data Augmentation and Dataset Establishment
2.3. YOLOv5s-BiPCNeXt
2.3.1. Model Lightweight
2.3.2. Optimization of the Small Target Disease Detection Model
2.3.3. Optimization of Disease Target Detection at Different Scales
3. Experimental and Results Analysis
3.1. Experimental Setting
3.2. Evaluation Criteria
3.3. Detection Performance of YOLOv5s-BiPCNeXt
3.4. Ablation Study
3.5. Contrasting Experimental Studies of Multiple Attention Mechanisms
3.6. Comparative Performance Analysis of the Different Models
3.7. Comparison of Blade Detection Capabilities of Different Models in Real Scenarios
4. Discussions
4.1. Lightweight Model Optimization
4.2. Accuracy Enhancement
4.3. Future Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalloo, G. Eggplant: Solanum melongena L. Genet. Improv. Veg. Crops 1993, 587–604. [Google Scholar] [CrossRef]
- Daunay, M.-C.; Janick, J. History and iconography of eggplant. Chron. Hortic. 2007, 47, 16–22. [Google Scholar]
- Gürbüz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. Health benefits and bioactive compounds of eggplant. Food Chem. 2018, 268, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Kumar, M. World status of phytoplasma diseases associated with eggplant. Crop Prot. 2017, 96, 22–29. [Google Scholar] [CrossRef]
- Misawa, T.; Iwadate, Y.; Kurose, D. Phylogenetic analysis of the pathogen causing eggplant brown leaf spot. J. Gen. Plant Pathol. 2021, 87, 123–126. [Google Scholar] [CrossRef]
- Bracuto, V.; Appiano, M.; Ricciardi, L.; Göl, D.; Visser, R.G.; Bai, Y.; Pavan, S. Functional characterization of the powdery mildew susceptibility gene SmMLO1 in eggplant (Solanum melongena L.). Transgenic Res. 2017, 26, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Kaniyassery, A.; Thorat, S.A.; Kiran, K.R.; Murali, T.S.; Muthusamy, A. Fungal diseases of eggplant (Solanum melongena L.) and components of the disease triangle: A review. J. Crop Improv. 2023, 37, 543–594. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 2018, 156, 312–322. [Google Scholar] [CrossRef]
- Rather, S.; Deo, I. Inheritance pattern and gene action of brown planthopper (Nilaparvata lugens Stäl.) resistance in newly identified donors of rice (Oryza sativa L.). Cereal Res. Commun. 2018, 46, 679–685. [Google Scholar] [CrossRef]
- Dai, G.; Tian, Z.; Fan, J.; Sunil, C.; Dewi, C. DFN-PSAN: Multi-level deep information feature fusion extraction network for interpretable plant disease classification. Comput. Electron. Agric. 2024, 216, 108481. [Google Scholar] [CrossRef]
- He, J.; Liu, T.; Li, L.; Hu, Y.; Zhou, G. MFaster r-CNN for maize leaf diseases detection based on machine vision. Arab. J. Sci. Eng. 2023, 48, 1437–1449. [Google Scholar] [CrossRef]
- Xu, L.; Cao, B.; Zhao, F.; Ning, S.; Xu, P.; Zhang, W.; Hou, X. Wheat leaf disease identification based on deep learning algorithms. Physiol. Mol. Plant Pathol. 2023, 123, 101940. [Google Scholar] [CrossRef]
- Li, S.; Li, K.; Qiao, Y.; Zhang, L. A multi-scale cucumber disease detection method in natural scenes based on YOLOv5. Comput. Electron. Agric. 2022, 202, 107363. [Google Scholar] [CrossRef]
- Qi, J.; Liu, X.; Liu, K.; Xu, F.; Guo, H.; Tian, X.; Li, M.; Bao, Z.; Li, Y. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Comput. Electron. Agric. 2022, 194, 106780. [Google Scholar] [CrossRef]
- Ye, R.; Shao, G.; He, Y.; Gao, Q.; Li, T. YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea. Sensors 2024, 24, 2896. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, W.; Chen, A.; He, M.; Ma, X. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion. IEEE Access 2019, 7, 143190–143206. [Google Scholar] [CrossRef]
- Zhai, S.; Shang, D.; Wang, S.; Dong, S. DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access 2020, 8, 24344–24357. [Google Scholar] [CrossRef]
- Li, H.; Shi, L.; Fang, S.; Yin, F. Real-Time Detection of Apple Leaf Diseases in Natural Scenes Based on YOLOv5. Agriculture 2023, 13, 878. [Google Scholar] [CrossRef]
- Chang, T.Y.; Hong, J.H.; Yeh, P. Spatial amplification: An image-processing technique using the selective amplification of spatial frequencies. Opt. Lett. 1990, 15, 743–745. [Google Scholar] [CrossRef]
- Kamijo, S.; Matsushita, Y.; Ikeuchi, K.; Sakauchi, M. Occlusion Robust Tracking Utilizing Spatio-Temporal Markov Random Field Model. In Proceedings of the 5th International Conference on Pattern Recognition, Barcelona, Spain, 3–7 September 2000. [Google Scholar] [CrossRef]
- Yakovlev, A.; Lisovychenko, O. An approach for image annotation automatization for artificial intelligence models learning. Адаптивні Системи Автoматичнoгo Управління 2020, 1, 32–40. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, J.; Yang, S.; Ning, J. An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings. Biosyst. Eng. 2024, 237, 1–12. [Google Scholar] [CrossRef]
- Wang, D.; He, D. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosyst. Eng. 2021, 210, 271–281. [Google Scholar] [CrossRef]
- Zhou, D.; Hou, Q.; Chen, Y.; Feng, J.; Yan, S. Rethinking bottleneck structure for efficient mobile network design. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part III 16. pp. 680–697. [Google Scholar]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. Carafe: Content-aware reassembly of features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October 2019–2 November 2019; pp. 3007–3016. [Google Scholar]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Andrew, G.; Menglong, Z. Efficient convolutional neural networks for mobile vision applications. Mobilenets 2017, 10, 151. [Google Scholar]
- Chen, Y.; Wang, T.; Lin, H. Research on Forest Flame Detection Algorithm Based on a Lightweight Neural Network. Forests 2023, 14, 2377. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, R.; Peng, J.; Peng, H.; Hu, W.; Wang, Y.; Jiang, P. Yolo-Chili: An Efficient Lightweight Network Model for Localization of Pepper Picking in Complex Environments. Appl. Sci. 2024, 14, 5524. [Google Scholar] [CrossRef]
- Chen, J.; Kao, S.-h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Don’t walk: Chasing higher FLOPS for faster neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 12021–12031. [Google Scholar]
- Zhu, L.; Wang, X.; Ke, Z.; Zhang, W.; Lau, R.W. Biformer: Vision transformer with bi-level routing attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 10323–10333. [Google Scholar]
- Tang, Q.; Li, X.; Xie, M.; Zhen, J. Intelligent Space Object Detection Driven by Data from Space Objects. Appl. Sci. 2023, 14, 333. [Google Scholar] [CrossRef]
- Jiuxin, W.; Yaoheng, S.; Jiahui, Y. Apple rapid recognition and processing method based on an improved version of YOLOv5. Ecol. Inform. 2023, 77, 102196. [Google Scholar] [CrossRef]
- Lu, A.; Liu, J.; Cui, H.; Ma, L.; Ma, Q. MLP-YOLOv5: A Lightweight Multi-Scale Identification Model for Lotus Pods with Scale Variation. Agriculture 2023, 14, 30. [Google Scholar] [CrossRef]
- Cui, M.; Lou, Y.; Ge, Y.; Wang, K. LES-YOLO: A lightweight pinecone detection algorithm based on improved YOLOv4-Tiny network. Comput. Electron. Agric. 2023, 205, 107613. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, H.; Xu, Y.; Shi, Z. A Lightweight Detection Method for Blueberry Fruit Maturity Based on an Improved YOLOv5 Algorithm. Agriculture 2023, 14, 36. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
Leaf Category | Number of Labels before Augmentation | Increased Number of Labels |
---|---|---|
Brown spot disease | 303 | 1890 |
Powdery mildew | 188 | 1175 |
Healthy | 293 | 1468 |
Totality | 784 | 4533 |
Configuration Name | Environmental Parameter |
---|---|
Operating system | Windows10(64-bit professional version) |
CPU | 13th Gen Intel(R) Core(TM) i5-13600KF |
GPU | NVIDIA GeForce RTX 4070 Ti, Graphics memory is 12GB |
RAM | 32GB |
Deep learning framework | Pytorch-GPU2.1.0+cu118 |
GPU acceleration library | cuDNN8.9.5 |
Disease | Models | P (%) | R (%) | mAP@0.5 (%) | mAP@0.5:0.95 (%) | Parameter | GFLOPs | Weights(MB) |
---|---|---|---|---|---|---|---|---|
All | YOLOV5s | 95.9 | 93.1 | 94.3 | 71.9 | 7,043,864 | 15.8 | 13.6 |
Healthy | 98.5 | 98.3 | 98.8 | 91.0 | ||||
Brown spot | 94.5 | 90.7 | 92.5 | 62.6 | ||||
Powdery mildew | 94.7 | 88.8 | 91.6 | 62.1 | ||||
All | YOLOv5s-BiPCNeXt | 96.2 | 94.8 | 96.5 | 75.8 | 4,151,808 | 9.8 | 8.8 |
Healthy | 99.4 | 99.4 | 99.5 | 94.4 | ||||
Brown spot | 94.8 | 92.7 | 94.9 | 66.1 | ||||
Powdery mildew | 94.5 | 92.4 | 95.0 | 67.0 |
MobileNeXt | C3-BiPC | CARFE | EMA | mAP@0.5 (%) | Parameters | GFLOPs |
---|---|---|---|---|---|---|
- | - | - | - | 94.3 | 7,043,864 | 15.8 |
√ | 91.5 | 4,836,435 | 10.5 | |||
- | √ | - | - | 96.0 | 6,565,575 | 14.3 |
- | - | √ | - | 94.5 | 6,974,363 | 16.0 |
√ | √ | - | - | 94.8 | 5,869,478 | 10.8 |
√ | √ | √ | - | 95.5 | 5,435,347 | 10 |
√ | √ | √ | √ | 96.5 | 4,151,808 | 9.8 |
Attention Mechanism | P (%) | R (%) | (%) | Parameters | GFLOPs |
---|---|---|---|---|---|
CA | 93.2 | 92.3 | 94.5 | 5,043,864 | 10.8 |
SE | 95.5 | 92.5 | 93.2 | 4,973,252 | 11.0 |
CBAM | 94.4 | 93.3 | 95.0 | 5,368,654 | 14.3 |
EMA | 96.2 | 94.8 | 96.5 | 4,151,808 | 9.8 |
Models | P (%) | R (%) | [email protected] (%) | Parameters | GFLOPs | Weights (MB) | FPS |
---|---|---|---|---|---|---|---|
Fast R-CNN | 74.3 | 85.6 | 95.8 | 22,485,357 | 303.6 | 108.3 | 8 |
YOLOv5s | 95.9 | 93.1 | 94.3 | 7,043,864 | 15.8 | 13.6 | 15 |
YOLOv7 | 93.6 | 93.2 | 96.4 | 33,556,879 | 315.5 | 120.8 | 10 |
YOLOv8s | 89.8 | 95.2 | 94.5 | 10,394,568 | 27.4 | 30.1 | 15 |
YOLOv9-C | 96.2 | 95.5 | 97.2 | 51,004,178 | 238.9 | 102.8 | 13 |
YOLOv5-BiPCNeXt | 96.2 | 94.8 | 96.5 | 4,151,808 | 9.8 | 8.8 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Li, C.; Yang, Z.; Zhang, Z.; Jiang, J.; Guo, H. YOLOv5s-BiPCNeXt, a Lightweight Model for Detecting Disease in Eggplant Leaves. Plants 2024, 13, 2303. https://doi.org/10.3390/plants13162303
Xie Z, Li C, Yang Z, Zhang Z, Jiang J, Guo H. YOLOv5s-BiPCNeXt, a Lightweight Model for Detecting Disease in Eggplant Leaves. Plants. 2024; 13(16):2303. https://doi.org/10.3390/plants13162303
Chicago/Turabian StyleXie, Zhedong, Chao Li, Zhuang Yang, Zhen Zhang, Jiazhuo Jiang, and Hongyu Guo. 2024. "YOLOv5s-BiPCNeXt, a Lightweight Model for Detecting Disease in Eggplant Leaves" Plants 13, no. 16: 2303. https://doi.org/10.3390/plants13162303
APA StyleXie, Z., Li, C., Yang, Z., Zhang, Z., Jiang, J., & Guo, H. (2024). YOLOv5s-BiPCNeXt, a Lightweight Model for Detecting Disease in Eggplant Leaves. Plants, 13(16), 2303. https://doi.org/10.3390/plants13162303