跳转到内容

依賴選擇公理

维基百科,自由的百科全书

在數學上,依賴選擇公理,英語:Axiom of dependent choice)是選擇公理)較弱的版本,但依賴選擇公理依舊足以發展實分析絕大多數的內容。依賴選擇公理最早由保羅·伯奈斯英语Paul Bernays於1942年一篇討論哪些集合論公理對發展數學分析是必要的文章中引入。[a]

正式描述

[编辑]

若一個上的齊次關係英语homogeneous relation被稱作全關係,則對於所有的而言,皆存在有一個,使得成立。

依賴選擇公理的表述如下: 對於任意非空集合及任意上的全關係而言,皆存在有一個上的序列,使得以下陳述成立:

對於任意的而言,

若限制上述的為所有實數的集合,那相關公理可表記為

應用

[编辑]

即使在沒有這條公理的狀況下,對於任意的,依舊可用一般的數學歸納法造出如此序列的最前面項;而依賴選擇公理說的是我們可用此種方式造出整個(可數無限的)序列。

這條公理是的片斷,而在「必須於每一步都做出選擇」且「一些選擇無法在不仰賴先前選擇的情形下獨立做出」的狀況下證明「存在有可以可數長度的超限遞歸建構的序」列時,這條公理是必須的。

等價陳述

[编辑]

策梅洛-弗蘭克爾集合論的框架下,等同於完備度量空間上的貝爾綱定理[1]

的框架下,這公理也等價於勒文海姆–斯科倫定理[b][2]

的框架下也與「所有有層且剪枝過的樹英语pruned tree都有分支英语Branch (descriptive set theory)」這陳述等價。

不僅如此,也與弱化版的佐恩引裡等價;特別地,與「任何使得所有良序鏈都有限且有界的偏序,都必然有極大元素」這敘述等價。[3]

與其他公理的關係

[编辑]

和完整版的不同的是,的框架下,不足以證明說有些實數集是不可測集,也不足以證明有些實數集合不具有貝爾性質完美集性質英语perfect set property;而由於梭羅維模型滿足,且在此模型中所有的實數集合都是勒貝格可測集、都具有貝爾性質和完美集性質之故,因此這說法成立。

依賴選擇公理蘊含可數選擇公理,且嚴格強於可數選擇公理。[4][5]

註解

[编辑]
  1. ^ "The foundation of analysis does not require the full generality of set theory but can be accomplished within a more restricted frame." Bernays, Paul. Part III. Infinity and enumerability. Analysis. (PDF). Journal of Symbolic Logic. A system of axiomatic set theory. 1942, 7 (2): 65–89 [2022-07-23]. JSTOR 2266303. MR 0006333. doi:10.2307/2266303. (原始内容存档 (PDF)于2022-07-23).  The axiom of dependent choice is stated on p. 86.
  2. ^ Moore states that "Principle of Dependent Choices Löwenheim–Skolem theorem" — that is, implies the Löwenheim–Skolem theorem. See table Moore, Gregory H. Zermelo's Axiom of Choice: Its origins, development, and influence. Springer. 1982: 325. ISBN 0-387-90670-3. 

參考資料

[编辑]
  1. ^ 「貝爾綱定理蘊含依賴選擇公理」─Blair, Charles E. The Baire category theorem implies the principle of dependent choices. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 1977, 25 (10): 933–934. 
  2. ^ The converse is proved in Boolos, George S.; Jeffrey, Richard C. Computability and Logic需要免费注册 3rd. Cambridge University Press. 1989: 155–156. ISBN 0-521-38026-X. 
  3. ^ Wolk, Elliot S., On the principle of dependent choices and some forms of Zorn's lemma 26 (3), Canadian Mathematical Bulletin: 365–367, 1983 [2022-07-23], doi:10.4153/CMB-1983-062-5可免费查阅, (原始内容存档于2022-07-23) 
  4. ^ 伯奈斯證明說依賴選擇公理蘊含可數選擇公理,相關資料可見於Bernays, Paul. Part III. Infinity and enumerability. Analysis. (PDF). Journal of Symbolic Logic. A system of axiomatic set theory. 1942, 7 (2): 65–89 [2022-07-23]. JSTOR 2266303. MR 0006333. doi:10.2307/2266303. (原始内容存档 (PDF)于2022-07-23). 的第86頁
  5. ^ 對於可數選擇公理不蘊含依賴選擇公理這點,可見Jech, Thomas, The Axiom of Choice, North Holland: 130–131, 1973, ISBN 978-0-486-46624-8 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy