跳转到内容

外觀數列

维基百科,自由的百科全书

外觀數列(Look-and-say sequence),又被稱為莫里斯數列(Morris number sequence)、螞蟻數列,其第n項描述了第n-1項的數字分布。它以1開始:

一、1:讀作「1個1」,即11
二、11:讀作「2個1」,即21
三、21:讀作「1個2、1個1」,即1211
四、1211:讀作「1個1、1個2、2個1」,即111221
五、111221:讀作「3個1、2個2、1個1」,即312211
1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ... (OEIS數列A005150

如果從 0 至 9 中的任選一個d數字生成這個數列,那么可以確定d會保留在每一項的最后一位,如果d不是1的話,那么這個數列是:

d, 1d, 111d, 311d, 13211d, 111312211d, 31131122211d, …

伊蘭·瓦爾迪把 d = 3 時的數列稱為康威數列[1]OEIS數列A006715)。(d = 2 時的數列見OEISA006751

d=2

[编辑]

2,12,1112,3112,132112,1113122112,...

d=3

[编辑]

3,13,1113,3113,132113,1113122113,...

性質

[编辑]
画在复平面上的康威多项式的。最右处标注λ的实根为康威常数。
  • 除了1,2,3之外,沒有其他數字,除非初始的種子使用了其他數字,或者初始種子包含連續三個以上的相同數字。
  • 這個數列的增長是无界的。但是如果使用 22 來生成這個數列,可以得到一個退化的數列:22, 22, 22, 22, ... (OEIS數列A010861
  • 每生成下一項,數字大約增大30%。設 是第項的長度,則
其中OEIS數列A014715)稱為康威常數,它是下面71次方程唯一一個正實數解:

來由

[编辑]

這個數列最初出現在約翰·何頓·康威1986年論文 The Weird and Wonderful Chemistry of Audioactive Decay[2](收錄在Open Problems in Communication and Computation ISBN 0-387-96621-8)。它的靈感來自壓縮方法RLE(Run-length encoding)。

莫里斯數列得名於密碼學家羅伯特·莫里斯英语Robert_Morris_(cryptographer)

參考資料

[编辑]
  1. ^ Conway Sequence页面存档备份,存于互联网档案馆), MathWorld, accessed on line February 4, 2011.
  2. ^ Conway, John. The Weird and Wonderful Chemistry of Audioactive Decay. Eureka. January 1986, 46: 5–16 [2017-02-02]. (原始内容存档于2014-10-11). 

外部連結

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy