跳转到内容

星形域

维基百科,自由的百科全书
星形域(星形凸集)不一定是通常意义下的凸集
环形不是星形域。

在数学中,一个欧几里得空间Rn中的集合称为星形域(star domain)星形凸集(star-convex set),意思是存在中的点,使得对于中的所有,从线段也位于内。这个定义可以立刻推广到任何向量空间

直观地,如果我们把视为用围墙包围的一个区域,那么是一个星形域,意思是我们可以在中找到一个着眼点,使得中的任何点都在该点的视线内。

例子

[编辑]
  • Rn中的任何直线或平面都是星形域。
  • 一条直线或一个平面去掉一个点就不是星形域。
  • 如果ARn中的一个集合,那么把A的任何点与原点相连而得到的集合
是一个星形域。

性质

[编辑]
  • 任何非空凸集都是星形域。一个集合是凸集,当且仅当它关于该集合中的任何点都是星形域。
  • 十字形状是星形域,但不是凸集。
  • 一个星形域的闭包也是星形域,但一个星形域的内部不一定是星形域。
  • 任何星形域都是可缩集合,即與單點空間同倫等價,因為有一个直线同伦。特别地,任何星形域都是單連通集合
  • 两个星形域的并集和交集不一定是星形域。
  • Rn中的非空开星形域SRn微分同胚

参见

[编辑]

参考文献

[编辑]
  • Ian Stewart, David Tall, Complex Analysis. Cambridge University Press, 1983. ISBN 0-521-28763-4.

外部链接

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy