跳转到内容

柱狀均勻多面體

本页使用了标题或全文手工转换
维基百科,自由的百科全书
五角星反角柱英语pentagrammic antiprism是一種柱狀均勻多面體,其由2個正五角星和10個正三角形組成

幾何學中,柱狀均勻多面體(Prismatic uniform polyhedron)是指屬於柱狀形的均勻多面體,其通常具有二面體群對稱性。其包括了角柱和反角柱,同時柱狀均勻多面體也都是擬柱體

性質

[编辑]

柱狀均勻多面體具有點可遞的特性[1]。其對稱性通常與其底面相關,例如五角星反角柱英语pentagrammic antiprism的底面是一個五角星,因此其具有D5的二面體群對稱性[2]

列表

[编辑]
對稱群 星形
d2d
[2+,2]
(2*2)

3.3.3
d3h
[2,3]
(*223)

3.4.4
d3d
[2+,3]
(2*3)

3.3.3.3
d4h
[2,4]
(*224)

4.4.4
d4d
[2+,4]
(2*4)

3.3.3.4
d5h
[2,5]
(*225)

4.4.5

4.4.5/2英语Pentagrammic prism

3.3.3.5/2英语Pentagrammic antiprism
d5d
[2+,5]
(2*5)

3.3.3.5

3.3.3.5/3英语Pentagrammic crossed-antiprism
d6h
[2,6]
(*226)

4.4.6
d6d
[2+,6]
(2*6)

3.3.3.6
d7h
[2,7]
(*227)

4.4.7

4.4.7/2英语Heptagrammic prism (7/2)

4.4.7/3英语Heptagrammic prism (7/3)

3.3.3.7/2英语Heptagrammic antiprism (7/2)

3.3.3.7/4英语Heptagrammic crossed-antiprism
d7d
[2+,7]
(2*7)

3.3.3.7

3.3.3.7/3英语Heptagrammic antiprism (7/3)
d8h
[2,8]
(*228)

4.4.8

4.4.8/3英语Octagrammic prism
d8d
[2+,8]
(2*8)

3.3.3.8英语Octagonal antiprism

3.3.3.8/3英语Octagrammic antiprism

3.3.3.8/5英语Octagrammic crossed-antiprism
d9h
[2,9]
(*229)

4.4.9

4.4.9/2英语Enneagrammic prism (9/2)

4.4.9/4英语Enneagrammic prism (9/4)

3.3.3.9/2英语Enneagrammic antiprism (9/2)

3.3.3.9/4英语Enneagrammic antiprism (9/4)
d9d
[2+,9]
(2*9)

3.3.3.9英语Enneagonal antiprism

3.3.3.9/5英语Enneagrammic crossed-antiprism
d10h
[2,10]
(*2.2.10)

4.4.10

4.4.10/3英语Decagrammic prism
d10d
[2+,10]
(2*10)

3.3.3.10英语Decagonal antiprism

3.3.3.10/3英语Decagrammic antiprism
d11h
[2,11]
(*2.2.11)

4.4.11

4.4.11/2

4.4.11/3

4.4.11/4

4.4.11/5

3.3.3.11/2

3.3.3.11/4

3.3.3.11/6
d11d
[2+,11]
(2*11)

3.3.3.11英语Hendecagonal antiprism

3.3.3.11/3

3.3.3.11/5

3.3.3.11/7
d12h
[2,12]
(*2.2.12)

4.4.12

4.4.12/5英语Dodecagrammic prism
d12d
[2+,12]
(2*12)

3.3.3.12英语Dodecagonal antiprism

3.3.3.12/5英语Dodecagrammic antiprism

3.3.3.12/7英语Dodecagrammic crossed-antiprism
...

參見

[编辑]

參考文獻

[编辑]
  1. ^ Coxeter, Harold Scott MacDonald; Longuet-Higgins, M. S.; Miller, J. C. P. Uniform polyhedra. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences (The Royal Society). 1954, 246 (916): 401–450. ISSN 0080-4614. JSTOR 91532. MR 0062446. doi:10.1098/rsta.1954.0003. 
  2. ^ Kaleido Data: Uniform Polyhedron #4. (原始内容存档于2005-03-13). 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy