深度学习
冰不语
这个作者很懒,什么都没留下…
展开
-
头像/证件照抠图与圣诞背景替换
CVPy抠图系列文章继续。1. 头像/证件照抠图之前已经有过《一键智能抠图》、《【CV派】新玩法——AI一键抠图+素描》、《一键动物抠图,毛发毕现——人是不是动物?》、《如何从头训练一个一键抠图模型》几篇文章。之前的抠图模型是一个通用模型,任何物体都可以抠。但是正如在《如何从头训练一个一键抠图模型》文章结尾笔者提到的,边缘特别是人物头发处的抠图效果还有待提高:上面的抠图效果还是有待提高,比如头发等边缘处,还是可见部分背景未分离。前几天刚转发了动物抠图的新论文,边缘和毛发的抠图效果很赞。其单开一条支原创 2020-12-20 20:34:55 · 738 阅读 · 0 评论 -
如何从头训练一个一键抠图模型
如何从头训练一个一键抠图模型1. 前言抠图是图像编辑的基础功能之一,在抠图的基础上可以发展出很多有意思的玩法和特效。比如一键更换背景、一键任务卡通化、一键人物素描化等。正是因为这些有意思的玩法,CVPy网站上的一键抠图功能上线以来,从赞数来看,人气之高已经遥遥领先于CV派内其他高手,可见此模型的受欢迎程度。笔者最近也是对此模型背后的U-2-Net网络很感兴趣,收集数据训练了人脸素描化模型,尽管受限于数据集,只能在人脸图片上转换成功,但自己仍然玩的不亦乐乎。不仅乐于玩模型的有意思的效果,更乐在训练模型过原创 2020-11-16 19:53:23 · 1532 阅读 · 1 评论 -
【CV派】新玩法——AI一键抠图+素描
看过之前文章的朋友们知道,我最近成立了一个门派,与公众号同名,名为【CV派】。山门及门派一众高手介绍如下:新玩法话说最近新入门的高手CV小素,竟然撇下其妹妹AI小素,整天与AI魅婷“称姊道妹”。当然,与魅婷厮混是可以理解的,毕竟魅婷是CV派人气第一的高手,看看每个高手底部的赞数就一目了然了。正因为如此,不仅仅是CV小素,其他高手,比如AI卡图,其实也在找机会与魅婷套近乎。魅婷为人热情,在于众人论道的过程中也不藏私,其功法绝学【一键抠图】被不少人学了去。与此同时,魅婷也是学到了不少新技能,比如CV小素原创 2020-11-01 22:13:59 · 612 阅读 · 0 评论 -
肖像转素描:AI小素的前世今生
一. 小素的全名和家族箴言前段时间,我做了个AI,叫小素,能够把肖像图片转成素描风格。受限于数据集,目前只是人物肖像的转换效果还能看,其余的如风景建筑、花鸟虫鱼、风花雪月之类的图片,也可以转换,只是效果嘛…只能说一切皆有可能!下面是小素的几张人物肖像的转换效果:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7V8RAgNV-1599990106307)(https://img.cvpy.net/sketch_example_1.jpg)]这几张转换效果还是不错的。原创 2020-09-13 17:45:41 · 776 阅读 · 0 评论 -
一键智能抠图-原理实现
1. 效果秀有些朋友已经体验过了cvpy.net最近新上的一键智能抠图和换背景的功能,智能判断前景并自动抠图,效果还是挺惊艳的,放几张图看看效果:请注意看这位喵星人右侧性感的胡须,抠的可谓是非常精细了。有人说了,这张图片的的背景是简单的纯色背景,体现不出难度来。那我换一张我在路边拍的一朵不知名的花(恕我孤陋寡闻…)的图片,看看抠图的效果,顺便换个蓝色的背景:可以看到,模型成功识别出了前景区域,而且边缘等细节识别的非常好。再来看一张人物照的抠图效果:注意看左手指缝和肩膀后面的那一缕头发,称原创 2020-08-31 13:54:37 · 3554 阅读 · 2 评论 -
深度学习中的目标检测:概述
本文首发于公众号CVPy:深度学习中的目标检测:概述本文由`CVPy`翻译自以下文章:https://tryolabs.com/blog/2017/08/30/object-detection-an-overview-in-the-age-of-deep-learning/。前言从简单的图像分类到3D姿势估计,计算机视觉中不乏有趣的问题。目标检测是我们最感兴趣并且已经研究过的问题之一。像许多其他计算机视觉问题一样,仍然没有一种“最佳”的方法来解决目标检测问题,这意味着仍有很大的改进空间。在翻译 2020-07-25 08:52:48 · 2036 阅读 · 0 评论 -
TensorFlow Object Detection目标检测模型训练时Loss急剧上升直至为NAN
今天用TensorFlow Object Detection训练目标检测模型的时候,Loss一直不正常,先下降了一下,然后急剧上升直至为NAN。然后报错Model diverged with loss = NaN.。截取部分日志如下:INFO:tensorflow:loss = 18919772.0, step = 0INFO:tensorflow:loss = 344412.66, step = 100 (27.579 sec)INFO:tensorflow:loss = 156323.77, st原创 2020-07-21 15:03:16 · 1825 阅读 · 0 评论 -
卡通化-看看二次元的你长什么样
CVPR2020收录了一篇卡通化的文章,Xinrui Wang和Jinze Yu的《Learning to Cartoonize Using White-box Cartoon Representations》。可以把人物或者风景画转换为卡通风格的图片,效果非常惊艳。相比于之前深度学习为人诟病的“黑盒”学习,文章中提出了生成卡通化图片的“白盒”表示法,将图像分解为三种卡通表示,指导网络优化生成卡通照片,三种表示分别是surface表示、structure表示、texture表示。我个人的理解是,图像的原创 2020-07-16 09:01:06 · 655 阅读 · 0 评论 -
OpenCV DNN 模块-风格迁移
本文主要介绍OpenCV的DNN模块的使用。OpenCV的DNN模块自从contrib仓库开始,就是只支持推理,不支持训练。但是仅仅只是推理方面,也够强大了。现在OpenCV已经支持TensorFlow、Pytorch/Torch、Caffe、DarkNet等模型的读取。本文们就以风格迁移为例,来看一下OpenCV DNN模块的用法。相比于复杂而耗时的模型训练过程,模型推理就显得简单多了。简单来说,过程就是:加载模型输入图像预处理(跟训练过程一样的方式,增强除外)模型推理1. 加载模型因为.原创 2020-07-05 22:05:50 · 2639 阅读 · 1 评论 -
卷积到底是怎么【卷】的
卷积,这个词大家应该都不陌生,数学中傅立叶变换的时候,物理中信号处理的时候,图像处理中滤波的时候、提取边缘的时候,还有深度学习中卷积神经网络的时候,处处可见卷积的影子。卷积在图像处理中的应用非常广泛,可以说理解了卷积,就可以理解图像处理算法的半壁江山,也不知道这个说法是否夸张了。但是都说卷积卷积,那卷积到底是怎么个卷法呢?本文尝试解答这一问题。理解的卷积计算过程想要理解卷积,一些必要的数学公...原创 2019-11-28 10:17:51 · 3143 阅读 · 2 评论 -
TensorFlow Object Detection API使用问题小记
1. Faster RCNN batch size 只能设为1?参考:object detect api fasterrcnn OOM:https://github.com/tensorflow/models/issues/3697#issuecomment-425992882有三种可选的办法:Add pad_to_max_dimension : true in keep_aspect_r...原创 2019-11-27 10:50:08 · 1677 阅读 · 1 评论 -
OpenCV学完基础知识不知道做什么?!我不相信这是真的
编程是需要练习的,需要项目练手的。听不少人说过,学习完OpenCV的基础部分之后就不知道该干什么了?怎么可能呢?实际上能做的事情很多,不要因为觉得太简单或者太难就不动手做了。只要有兴趣有时间有需要,就先动手做起来。哪怕先实现其中最简单的部分,后面再慢慢的一边学习一边添加功能,也是好的。下面推荐一些项目,没有源码,自己动手查资料做哦,即使是网上能找到代码我还是推荐自己写一遍。实现原创 2018-01-29 14:05:00 · 26247 阅读 · 0 评论 -
有人开源了Mask R-CNN对象检测和分割的Keras和TensorFlow代码
有人在github上发布了何凯明的Mask R-CNN目标检测和对象分割Keras和TensorFlow的实现代码。这个实现基于Python 3、Keras和TensorFlow。模型对图片中的每个对象实例生成包围框(bounding boxes)和分割掩膜(segmentation masks)。基于特征金字塔网络(FPN)和ResNet101的主干(backbone)。 这个giuhub仓原创 2017-11-03 10:06:37 · 8111 阅读 · 1 评论 -
OpenCV的dnn模块调用TesorFlow训练的MoblieNet模型
一、初得模型那是一个月之前的事情了,我利用TesorFlow Object Detection API训练了现在目标检测里面应该是最快的网络MobileNet。当时的目的就只是学习整个finetuning的流程,于是我只是用了20张自己标注的人脸样本图片作为训练集去finetuning,训练完之后的模型通过修改TesorFlow Object Detection API自带的例程代码,即object原创 2017-11-01 18:06:30 · 25635 阅读 · 48 评论 -
UnicodeDecodeError: 'rawunicodeescape' codec can't decode bytes in position 80-81: truncated \UXXX
一、环境windows 7python3.6(Anaconda3)keras 2 api二、模型保存遇到了这个问题保存部分代码如下:model_name = 'ssd7_0'model.save("ssd7_0.h5")model.save_weights(r'ssd7_0_weights.h5')然后运行就遇到了这个问题:--------------------------------原创 2017-09-08 21:29:44 · 3526 阅读 · 1 评论 -
OpenCV3.3出炉,DNN为最大亮点
OpenCV3.3在8月3号正式出炉,想要体验最新特性的朋友可以去官网下载了,反正配置一下只需要几分钟。这次最主要的更新就是,终于把DNN模块从contrib里面提到主仓库里面,放到了官方发布版中。虽然我配置的一直是OpenCV with contrib,但是对于DNN模块,限于电脑配置太低,一直没有怎么尝试。这次可以借着新版发布抽空尝试一下了。按照官方介绍,DNN现在有下面几点特性:无需任何依赖新原创 2017-08-06 11:08:21 · 7175 阅读 · 6 评论