- Adhikari, R., & Agrawal, R. K. (2012). Combining multiple time series models through a robust weighted mechanism. In 2012 1st International Conference on Recent Advances in Information Technology (RAIT) (pp. 455–460). IEEE.
Paper not yet in RePEc: Add citation now
- Agnew, C. E. (1985). Bayesian consensus forecasts of macroeconomic variables. Journal of Forecasting, 4(4), 363–376.
Paper not yet in RePEc: Add citation now
Aiolfi, M., & Timmermann, A. (2006). Persistence in forecasting performance and conditional combination strategies. Journal of Econometrics, 135(1‐2), 31–53.
Aksu, C., & Gunter, S. I. (1992). An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts. International Journal of Forecasting, 8(1), 27–43.
- Ali, A. (2020). Ensemble learning model for prediction of natural gas spot price based on least squares boosting algorithm. In 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI) (pp. 1–6). IEEE.
Paper not yet in RePEc: Add citation now
- Allende, H., & Valle, C. (2017). Ensemble methods for time series forecasting, Claudio moraga: A passion for multi‐valued logic and soft computing (pp. 217–232). Springer.
Paper not yet in RePEc: Add citation now
- Aras, S. (2021). Stacking hybrid GARCH models for forecasting bitcoin volatility. Expert Systems with Applications, 174, 114747.
Paper not yet in RePEc: Add citation now
Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. Journal of Economic Perspectives, 31(2), 3–32.
- Avnimelech, R., & Intrator, N. (1999). Boosting regression estimators. Neural computation, 11(2), 499–520.
Paper not yet in RePEc: Add citation now
- Avramov, D. (2002). Stock return predictability and model uncertainty. Journal of Financial Economics, 64(3), 423–458.
Paper not yet in RePEc: Add citation now
Ayi Armah, N., & Swanson, N. R. (2010). Seeing inside the black box: Using diffusion index methodology to construct factor proxies in large scale macroeconomic time series environments. Econometric Reviews, 29(5‐6), 476–510.
Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.
Bai, J., & Ng, S. (2006a). Evaluating latent and observed factors in macroeconomics and finance. Journal of Econometrics, 131(1‐2), 507–537.
- Bai, J., & Ng, S. (2006b). Confidence intervals for diffusion index forecasts with a large number of predictors. Econometrica, 74(4), 11331150.
Paper not yet in RePEc: Add citation now
Barrow, D. K., & Crone, S. F. (2016). A comparison of adaboost algorithms for time series forecast combination. International Journal of Forecasting, 32(4), 1103–1119.
- Barrow, D. K., Crone, S. F., & Kourentzes, N. (2010). An evaluation of neural network ensembles and model selection for time series prediction. In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.
Paper not yet in RePEc: Add citation now
- Basu, S., & Michailidis, G. (2015). Regularized estimation in sparse high‐dimensional time series models. The Annals of Statistics, 43(4), 1535–1567.
Paper not yet in RePEc: Add citation now
- Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. operations research quaterly, v. 20.
Paper not yet in RePEc: Add citation now
- Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning, 36(1‐2), 105–139.
Paper not yet in RePEc: Add citation now
Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. International journal of forecasting, 32(2), 303–312.
Bou‐Hamad, I., & Jamali, I. (2020). Forecasting financial time‐series using data mining models: A simulation study. Research in International Business and Finance, 51, 101072.
- Breiman, L. (1996a). Bagging predictors. Machine learning, 24(2), 123–140.
Paper not yet in RePEc: Add citation now
- Breiman, L. (1996b). Stacked regressions. Machine learning, 24(1), 49–64.
Paper not yet in RePEc: Add citation now
Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of finance, 47(5), 1731–1764.
- Brown, G. (2004). Diversity in neural network ensembles. (Ph.D. Thesis).
Paper not yet in RePEc: Add citation now
- Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: A survey and categorisation. Information Fusion, 6(1), 5–20.
Paper not yet in RePEc: Add citation now
- Brown, T. A. (1974). Admissible scoring systems for continuous distributions.
Paper not yet in RePEc: Add citation now
- Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli, 3(2), 123–148.
Paper not yet in RePEc: Add citation now
- Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477–505.
Paper not yet in RePEc: Add citation now
- Bühlmann, P., & Yu, B. (2002). Analyzing bagging. The Annals of Statistics, 30(4), 927–961.
Paper not yet in RePEc: Add citation now
- Buja, A., & Stuetzle, W. (2006). Observations on bagging. Statistica Sinica, 16(2), 323.
Paper not yet in RePEc: Add citation now
- Bunn, D. W. (1975). A bayesian approach to the linear combination of forecasts. Journal of the Operational Research Society, 26(2), 325–329.
Paper not yet in RePEc: Add citation now
Bunn, D. W. (1985). Statistical efficiency in the linear combination of forecasts. International Journal of Forecasting, 1(2), 151–163.
Chan, Y. L., Stock, J. H., & Watson, M. W. (1999). A dynamic factor model framework for forecast combination. Spanish Economic Review, 1(2), 91–121.
- Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: extreme gradient boosting. R package version 0.4‐2, 1–4.
Paper not yet in RePEc: Add citation now
Christoffersen, P. F., & Diebold, F. X. (2006). Financial asset returns, direction‐of‐change forecasting, and volatility dynamics. Management Science, 52(8), 1273–1287.
Clement, M. P., & Hendry, D. F. (1998). Forecasting economic times series. Cambridge University Press.
- Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). Stl: A seasonal‐trend decomposition. Journal of official statistics, 6(1), 3–73.
Paper not yet in RePEc: Add citation now
Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223–236.
- Cordeiro, C., & Neves, M. M. (2009). Forecasting time series with boot. expos procedure. REVSTAT‐Statistical Journal, 7(2), 135–149.
Paper not yet in RePEc: Add citation now
- Cremers, K. J. M. (2002). Stock return predictability: A Bayesian model selection perspective. The Review of Financial Studies, 15(4), 1223–1249.
Paper not yet in RePEc: Add citation now
Davis, R. A., Drees, H., Segers, J., & Warchoł, M. (2018). Inference on the tail process with application to financial time series modeling. Journal of Econometrics, 205(2), 508–525.
Day, R. H., & Huang, W. (1990). Bulls, bears and market sheep. Journal of Economic Behavior & Organization, 14(3), 299–329.
De Menezes, L. M., Bunn, D. W., & Taylor, J.W. (2000). Review of guidelines for the use of combined forecasts. European Journal of Operational Research, 120(1), 190–204.
- Drucker, H. (1997). Improving regressors using boosting techniques. In Icml 97 (107–115).
Paper not yet in RePEc: Add citation now
- Duffy, N., & Helmbold, D. P. (2000). Leveraging for regression. In Colt (208–219).
Paper not yet in RePEc: Add citation now
- e Silva, P. C. L., Junior, C. A. S., Alves, M. A., Silva, R., Cohen, M.W., & Guimarães, F. G. (2020). Forecasting in non‐stationary environments with fuzzy time series. Applied Soft Computing, 97, 106825.
Paper not yet in RePEc: Add citation now
- Eğrioğlu, E., & Fildes, R. (2020). A new bootstrapped hybrid artificial neural network approach for time series forecasting. Computational Economics, 1–29.
Paper not yet in RePEc: Add citation now
Elliott, G., Komunjer, I., & Timmermann, A. (2008). Biases in macroeconomic forecasts: Irrationality or asymmetric loss? Journal of the European Economic Association, 6(1), 122–157.
Elliott, G., Timmermann, A., & Komunjer, I. (2003). Estimating loss function parameters.
- Erdal, H., & Karahanoğlu, I. (2016). Bagging ensemble models for bank profitability: An emprical research on turkish development and investment banks. Applied Soft Computing, 49, 861–867.
Paper not yet in RePEc: Add citation now
- Evgeniou, T., Pontil, M., & Elisseeff, A. (2004). Leave one out error, stability, and generalization of voting combinations of classifiers. Machine learning, 55(1), 71–97.
Paper not yet in RePEc: Add citation now
Fitzenberger, B. (1998). The moving blocks bootstrap and robust inference for linear least squares and quantile regressions. Journal of Econometrics, 82(2), 235–287.
- Frank, E., & Pfahringer, B. (2006). Improving on bagging with input smearing, Pacific‐Asia conference on knowledge discovery and data mining (pp. 97–106). Springer.
Paper not yet in RePEc: Add citation now
- Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In ICML (Vol. 96, pp. 148–156). Citeseer.
Paper not yet in RePEc: Add citation now
- Freund, Y., & Schapire, R. E. (1997). A decision‐theoretic generalization of on‐line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119–139.
Paper not yet in RePEc: Add citation now
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics, 1189–1232.
Paper not yet in RePEc: Add citation now
- Friedman, J. H., & Hall, P. (2007). On bagging and nonlinear estimation. Journal of statistical planning and inference, 137(3), 669–683.
Paper not yet in RePEc: Add citation now
- Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2), 337–407.
Paper not yet in RePEc: Add citation now
- Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society: Series B (Methodological), 14(1), 107–114.
Paper not yet in RePEc: Add citation now
- Grandvalet, Y. (2000). Bagging down‐weights leverage points. In Proceedings of the IEEE‐INNS‐ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 4, pp. 505–510). IEEE.
Paper not yet in RePEc: Add citation now
- Grandvalet, Y. (2004). Bagging equalizes influence. Machine Learning, 55(3), 251–270.
Paper not yet in RePEc: Add citation now
- Granger, C. W. J. (1969). Prediction with a generalized cost of error function. Journal of the Operational Research Society, 20(2), 199–207.
Paper not yet in RePEc: Add citation now
Granger, C. W. J. (1999). Outline of forecast theory using generalized cost functions. Spanish Economic Review, 1(2), 161–173.
Granger, C. W. J. (2002). Some comments on risk. Journal of Applied Econometrics, 17(5), 447–456.
- Granger, C. W. J., & Pesaran, M. H. (2000). Economic and statistical measures of forecast accuracy. Journal of Forecasting, 19(7), 537–560.
Paper not yet in RePEc: Add citation now
- Granger, C. W. J., & Ramanathan, R. (1984). Improved methods of combining forecasts. Journal of forecasting, 3(2), 197–204.
Paper not yet in RePEc: Add citation now
- Guerrero, V. M. (1993). Time‐series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48.
Paper not yet in RePEc: Add citation now
- Gumelar, A. B., Setyorini, H., Adi, D. P., Nilowardono, S., Widodo, A., Wibowo, A. T., Sulistyono, M. Y. T., & Christine, E. (2020). Boosting the accuracy of stock market prediction using xgboost and long short‐term memory. In 2020 International Seminar on Application for Technology of Information and Communication (ISEMANTIC) (pp. 609–613). IEEE.
Paper not yet in RePEc: Add citation now
- Gyamerah, S. A., Ngare, P., & Ikpe, D. (2019). On stock market movement prediction via stacking ensemble learning method. In 2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFER) (pp. 1–8). IEEE.
Paper not yet in RePEc: Add citation now
- Haimovich, A., Ravindra, N. G., Stoytchev, S., Young, H. P., PerryWilson, F., van Dijk, D., Schulz, W. L., & Taylor, R. A. (2020). Development and validation of the quick Covid‐19 severity index (QCSI): A prognostic tool for early clinical decompensation. Annals of Emergency Medicine, 76, 442.
Paper not yet in RePEc: Add citation now
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction: Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
Huang, H., & Lee, T.‐H. (2010). To combine forecasts or to combine information? Econometric Reviews, 29(5‐6), 534–570.
Inoue, A., & Kilian, L. (2004). Bagging time series models.
Inoue, A., & Kilian, L. (2008). How useful is bagging in forecasting economic time series? A case study of us consumer price inflation. Journal of the American Statistical Association, 103(482), 511–522.
Jabeur, S. B., Mefteh‐Wali, S., & Viviani, J.‐L. (2021). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Annals of Operations Research, 1–21.
Jensen, M. C., & Benington, G. A. (1970). Random walks and technical theories: Some additional evidence. The Journal of Finance, 25(2), 469–482.
Jiang, M., Liu, J., Zhang, L., & Liu, C. (2020). An improved stacking framework for stock index prediction by leveraging tree‐based ensemble models and deep learning algorithms. Physica A: Statistical Mechanics and its Applications, 541, 122272.
Jin, S., Su, L., & Ullah, A. (2014). Robustify financial time series forecasting with bagging. Econometric Reviews, 33(5‐6), 575–605.
- Johansson, U., Löfström, T., & Niklasson, L. (2008). Evaluating standard techniques for implicit diversity. Pacific‐Asia Conference on Knowledge Discovery and Data Mining, 5012, 592–599.
Paper not yet in RePEc: Add citation now
- Johnson, N. E., Ianiuk, O., Cazap, D., Liu, L., Starobin, D., Dobler, G., & Ghandehari, M. (2017). Patterns of waste generation: A gradient boosting model for short‐term waste prediction in new york city. Waste management, 62, 3–11.
Paper not yet in RePEc: Add citation now
Jordan, S. J., Vivian, A., & Wohar, M. E. (2017). Forecasting market returns: bagging or combining? International Journal of Forecasting, 33(1), 102–120.
Jose, V. R. R., & Winkler, R. L. (2008). Simple robust averages of forecasts: Some empirical results. International Journal of Forecasting, 24(1), 163–169.
- Kearns, M. J., Vazirani, U. V., & Vazirani, U. (1994). An introduction to computational learning theory. MIT press.
Paper not yet in RePEc: Add citation now
Kleinberg, J., Ludwig, J., Mullainathan, S., & Obermeyer, Z. (2015). Prediction policy problems. American Economic Review, 105(5), 491–95.
Koop, G., & Potter, S. (2004). Forecasting in dynamic factor models using Bayesian model averaging. The Econometrics Journal, 7(2), 550–565.
- Kourentzes, N., Barrow, D. K., & Crone, S. F. (2014). Neural network ensemble operators for time series forecasting. Expert Systems with Applications, 41(9), 4235–4244.
Paper not yet in RePEc: Add citation now
Kourentzes, N., Petropoulos, F., & Trapero, J. R. (2014). Improving forecasting by estimating time series structural components across multiple frequencies. International Journal of Forecasting, 30(2), 291–302.
- Krogh, A., & Sollich, P. (1997). Statistical mechanics of ensemble learning. Physical Review E, 55(1), 811.
Paper not yet in RePEc: Add citation now
- Krstanovic, S., & Paulheim, H. (2017). Ensembles of recurrent neural networks for robust time series forecasting, International Conference on Innovative Techniques and Applications of Artificial Intelligence (pp. 34–46). Springer.
Paper not yet in RePEc: Add citation now
- Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2), 181–207.
Paper not yet in RePEc: Add citation now
- Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The annals of Statistics, 1217–1241.
Paper not yet in RePEc: Add citation now
- Lai, K. K., Yu, L., Wang, S., & Wei, H. (2006). A novel nonlinear neural network ensemble model for financial time series forecasting, International conference on computational science (pp. 790–793). Springer.
Paper not yet in RePEc: Add citation now
Lee, T.‐H., & Yang, Y. (2006). Bagging binary and quantile predictors for time series. Journal of econometrics, 135(1‐2), 465–497.
- Lehmann, E. L., & Casella, G. (2006). Theory of point estimation: Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- Lemke, C., & Gabrys, B. (2010). Meta‐learning for time series forecasting and forecast combination. Neurocomputing, 73(10‐12), 2006–2016.
Paper not yet in RePEc: Add citation now
- Liang, D., Tsai, C.‐F., Dai, A.‐J., & Eberle, W. (2018). A novel classifier ensemble approach for financial distress prediction. Knowledge and Information Systems, 54(2), 437–462.
Paper not yet in RePEc: Add citation now
Liang, D., Tsai, C.‐F., Lu, H.‐Y. R., & Chang, L.‐S. (2020). Combining corporate governance indicators with stacking ensembles for financial distress prediction. Journal of Business Research, 120, 137–146.
Liu, J., Lin, C.‐M. M., & Chao, F. (2019). Gradient boost with convolution neural network for stock forecast, Uk workshop on computational intelligence (pp. 155–165). Springer.
- Liu, Y., & Yao, X. (1999). Ensemble learning via negative correlation. Neural networks, 12(10), 1399–1404.
Paper not yet in RePEc: Add citation now
- Lopez‐Martin, M., Carro, B., & Sanchez‐Esguevillas, A. (2019). Neural network architecture based on gradient boosting for iot traffic prediction. Future Generation Computer Systems, 100, 656–673.
Paper not yet in RePEc: Add citation now
Malki, Z., Atlam, E.‐S., Hassanien, A. E., Dagnew, G., Elhosseini, M. A., & Gad, I. (2020). Association between weather data and covid‐19 pandemic predicting mortality rate: Machine learning approaches. Chaos, Solitons & Fractals, 138, 110137.
- Mallows, C. (1991). Another comment on O'Cinneide. The American Statistician, 45(3), 257.
Paper not yet in RePEc: Add citation now
- Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. R. (2000). Boosting algorithms as gradient descent. In Advances in Neural Information Processing Systems (pp. 512–518).
Paper not yet in RePEc: Add citation now
Matheson, J. E., & Winkler, R. L. (1976). Scoring rules for continuous probability distributions. Management science, 22(10), 1087–1096.
- McNees, S. K. (1992). The uses and abuses of ‘consensus’ forecasts. Journal of Forecasting, 11(8), 703–710.
Paper not yet in RePEc: Add citation now
- Melville, P., Shah, N., Mihalkova, L., & Mooney, R. J. (2004). Experiments on ensembles with missing and noisy data, International workshop on multiple classifier systems (pp. 293–302). Springer.
Paper not yet in RePEc: Add citation now
Min, C., & Zellner, A. (1993). Bayesian and non‐Bayesian methods for combining models and forecasts with applications to forecasting international growth rates. Journal of Econometrics, 56(1‐2), 89–118.
Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87–106.
- Negahban, S. N., Ravikumar, P., Wainwright, M. J., & Yu, B. (2012). A unified framework for high‐dimensional analysis of m‐estimators with decomposable regularizers. Statistical Science, 27(4), 538–557.
Paper not yet in RePEc: Add citation now
- Nguyen, H. M., Woo, S., Im, J., Jun, T., & Kim, D. (2016). A workload prediction approach using models stacking based on recurrent neural network and autoencoder. In 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS) (pp. 929–936). IEEE.
Paper not yet in RePEc: Add citation now
Niblett, A. (2018). Regulatory reform in ontario: Machine learning and regulation. CD Howe Institute Commentary, 507.
- Nolan, J. P. (2003). Modeling financial data with stable distributions, Handbook of heavy tailed distributions in finance (pp. 105–130). Elsevier.
Paper not yet in RePEc: Add citation now
- Oliveira, M. R., & Torgo, L. (2014). Ensembles for time series forecasting.
Paper not yet in RePEc: Add citation now
- Paulin, J., Calinescu, A., & Wooldridge, M. (2018). Agent‐based modeling for complex financial systems. IEEE Intelligent Systems, 33(2), 74–82.
Paper not yet in RePEc: Add citation now
- Pavlyshenko, B. (2018). Using stacking approaches for machine learning models. In 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP) (pp. 255–258). IEEE.
Paper not yet in RePEc: Add citation now
Pesaran, M. H., Pettenuzzo, D., & Timmermann, A. (2006). Forecasting time series subject to multiple structural breaks. The Review of Economic Studies, 73(4), 1057–1084.
Petropoulos, F., Hyndman, R. J., & Bergmeir, C. (2018). Exploring the sources of uncertainty: Why does bagging for time series forecasting work? European Journal of Operational Research, 268(2), 545–554.
- Politis, D. N., & Romano, J. P. (1992). A circular block‐resampling procedure for stationary data. Exploring the limits of bootstrap, 2635270.
Paper not yet in RePEc: Add citation now
- Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical association, 89(428), 1303–1313.
Paper not yet in RePEc: Add citation now
Rapach, D. E., & Strauss, J. K. (2010). Bagging or combining (or both)? an analysis based on forecasting us employment growth. Econometric Reviews, 29(5‐6), 511–533.
- Ratto, A. P., Merello, S., Oneto, L., Ma, Y., Malandri, L., & Cambria, E. (2018). Ensemble of technical analysis and machine learning for market trend prediction. In 2018 IEEE symposium series on computational intelligence (ssci) (pp. 2090–2096). IEEE.
Paper not yet in RePEc: Add citation now
- Ribeiro, M. H. D. M., & dos Santos Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short‐term prediction in agribusiness time series. Applied Soft Computing, 86, 105837.
Paper not yet in RePEc: Add citation now
- Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics, 172–181.
Paper not yet in RePEc: Add citation now
- Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2), 197–227.
Paper not yet in RePEc: Add citation now
- Scott, A. J. (2001). Combining forecasts. principles of forecasting. A Handbook for Researchers and Practitioners.
Paper not yet in RePEc: Add citation now
- Seber, G. A. F., & Lee, A. J. (2012). Linear regression analysis (Vol. 329). John Wiley & Sons.
Paper not yet in RePEc: Add citation now
- Severino, M. K., & Peng, Y. (2021). Machine learning algorithms for fraud prediction in property insurance: Empirical evidence using real‐world microdata. Machine Learning with Applications, 5, 100074.
Paper not yet in RePEc: Add citation now
Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Association, 105(489), 218–235.
- Shi, L., Xi, L., Ma, X., & Hu, X. (2009). Bagging of artificial neural networks for bankruptcy prediction. In 2009 International Conference on Information and Financial Engineering (pp. 154–156). IEEE.
Paper not yet in RePEc: Add citation now
- Shrestha, D. L., & Solomatine, D. P. (2006). Experiments with adaboost. rt, an improved boosting scheme for regression. Neural computation, 18(7), 1678–1710.
Paper not yet in RePEc: Add citation now
- Smyth, P., & Wolpert, D. (1999). Linearly combining density estimators via stacking. Machine Learning, 36(1‐2), 59–83.
Paper not yet in RePEc: Add citation now
Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147–162.
Stock, J. H., & Watson, M. W. (2003). Forecasting output and inflation: The role of asset prices. Journal of Economic Literature, 41(3), 788–829.
- Stock, J. H., & Watson, M. W. (2004). Combination forecasts of output growth in a seven‐country data set. Journal of forecasting, 23(6), 405–430.
Paper not yet in RePEc: Add citation now
Stock, J. H., & Watson, M. W. (2012). Generalized shrinkage methods for forecasting using many predictors. Journal of Business & Economic Statistics, 30(4), 481–493.
- Sullivan, R., Timmermann, A., & White, H. (1999). Data‐snooping, technical trading rule performance, and the bootstrap. The journal of Finance, 54(5), 1647–1691.
Paper not yet in RePEc: Add citation now
- Sun, S., Wang, S., Wei, Y., & Zhang, G. (2018). A clustering‐based nonlinear ensemble approach for exchange rates forecasting. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
Paper not yet in RePEc: Add citation now
Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting, 1, 135–196.
- Tsai, C.‐F. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. Information Fusion, 16, 46–58.
Paper not yet in RePEc: Add citation now
- Ueda, N., & Nakano, R. (1996). Generalization error of ensemble estimators. In Proceedings of International Conference on Neural Networks (ICNN'96) (Vol. 1, pp. 90–95). IEEE.
Paper not yet in RePEc: Add citation now
- Valiant, L. G. (1984). A theory of the learnable. In Proceedings of the sixteenth annual ACM symposium on theory of computing (pp. 436–445). ACM.
Paper not yet in RePEc: Add citation now
- Vapnik, V. (2013). The nature of statistical learning theory: Springer science & business media.
Paper not yet in RePEc: Add citation now
- Vrugt, J. A., Clark, M. P., Diks, C. G. H., Duan, Q., & Robinson, B. A. (2006). Multi‐objective calibration of forecast ensembles using bayesian model averaging. Geophysical Research Letters, 33(19).
Paper not yet in RePEc: Add citation now
- Wang, Q., Xu, W., & Zheng, H. (2018). Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles. Neurocomputing, 299, 51–61.
Paper not yet in RePEc: Add citation now
- Wang, X., & Zhang, Y. (2020). Multi‐step‐ahead time series prediction method with stacking lstm neural network. In 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 51–55). IEEE.
Paper not yet in RePEc: Add citation now
- Wei, S., Yang, D., Zhang, W., & Zhang, S. (2019). A novel noise‐adapted two‐layer ensemble model for credit scoring based on backflow learning. IEEE Access, 7, 99,217–99,230.
Paper not yet in RePEc: Add citation now
- Welch, I., & Goyal, A. (2007). A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies, 21(4), 1455–1508.
Paper not yet in RePEc: Add citation now
- Wichard, J., Merkwirth, C., & Ogorzalek, M. (2003). Building ensembles with heterogeneous models.
Paper not yet in RePEc: Add citation now
- Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241–259.
Paper not yet in RePEc: Add citation now
- Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67–82.
Paper not yet in RePEc: Add citation now
Wright, J. H. (2008). Bayesian model averaging and exchange rate forecasts. Journal of Econometrics, 146(2), 329–341.
Wright, J. H. (2009). Forecasting us inflation by Bayesian model averaging. Journal of Forecasting, 28(2), 131–144.
- Xia, Y., Liu, C., Da, B., & Xie, F. (2018). A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Systems with Applications, 93, 182–199.
Paper not yet in RePEc: Add citation now
Yang, K., Tian, F., Chen, L., & Li, S. (2017). Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches. International Review of Economics & Finance, 49, 276–291.
Yang, Y. (2001). Adaptive regression by mixing. Journal of the American Statistical Association, 96(454), 574–588.
- Yang, Y. (2003). Regression with multiple candidate models: Selecting or mixing? Statistica Sinica, 783–809.
Paper not yet in RePEc: Add citation now
Yang, Y. (2004). Combining forecasting procedures: Some theoretical results. Econometric Theory, 20(1), 176–222.
- Yeo, I.‐K., & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87(4), 954–959.
Paper not yet in RePEc: Add citation now
Yin, A. (2020). Equity premium prediction and optimal portfolio decision with bagging. The North American Journal of Economics and Finance, 54, 101274.
- Yumlu, M. S., Gurgen, F. S., & Okay, N. (2003). Financial time series prediction using mixture of experts. In International Symposium on Computer and Information Sciences (pp. 553–560). Springer.
Paper not yet in RePEc: Add citation now
- Zemel, R. S., & Pitassi, T. (2001). A gradient‐based boosting algorithm for regression problems. In Advances in neural information processing systems, pp. 696–702.
Paper not yet in RePEc: Add citation now
- Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175.
Paper not yet in RePEc: Add citation now
Zou, H., & Yang, Y. (2004). Combining time series models for forecasting. International journal of Forecasting, 20(1), 69–84.