create a website

Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting. (2022). Peng, Yaohao ; Fontoura, Joo Pedro ; Melo, Pedro Henrique.
In: Journal of Forecasting.
RePEc:wly:jforec:v:41:y:2022:i:8:p:1701-1724.

Full description at Econpapers || Download paper

Cited: 4

Citations received by this document

Cites: 164

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Hybrid Renewable Energy System Design: A Machine Learning Approach for Optimal Sizing with Net-Metering Costs. (2023). Lee, Sangyong ; Seong, Kwanjae ; Park, Sanghyoun ; Abdullah, Hafiz Muhammad.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:11:p:8538-:d:1154912.

    Full description at Econpapers || Download paper

  2. Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information. (2023). Xu, Weiju ; Ma, Weichun ; Wu, Rui ; Wang, LU.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002363.

    Full description at Econpapers || Download paper

  3. Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy. (2023). Polak, Pawel ; Miao, Jiaju.
    In: Papers.
    RePEc:arx:papers:2304.09947.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Adhikari, R., & Agrawal, R. K. (2012). Combining multiple time series models through a robust weighted mechanism. In 2012 1st International Conference on Recent Advances in Information Technology (RAIT) (pp. 455–460). IEEE.
    Paper not yet in RePEc: Add citation now
  2. Agnew, C. E. (1985). Bayesian consensus forecasts of macroeconomic variables. Journal of Forecasting, 4(4), 363–376.
    Paper not yet in RePEc: Add citation now
  3. Aiolfi, M., & Timmermann, A. (2006). Persistence in forecasting performance and conditional combination strategies. Journal of Econometrics, 135(1‐2), 31–53.

  4. Aksu, C., & Gunter, S. I. (1992). An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts. International Journal of Forecasting, 8(1), 27–43.

  5. Ali, A. (2020). Ensemble learning model for prediction of natural gas spot price based on least squares boosting algorithm. In 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI) (pp. 1–6). IEEE.
    Paper not yet in RePEc: Add citation now
  6. Allende, H., & Valle, C. (2017). Ensemble methods for time series forecasting, Claudio moraga: A passion for multi‐valued logic and soft computing (pp. 217–232). Springer.
    Paper not yet in RePEc: Add citation now
  7. Aras, S. (2021). Stacking hybrid GARCH models for forecasting bitcoin volatility. Expert Systems with Applications, 174, 114747.
    Paper not yet in RePEc: Add citation now
  8. Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. Journal of Economic Perspectives, 31(2), 3–32.

  9. Avnimelech, R., & Intrator, N. (1999). Boosting regression estimators. Neural computation, 11(2), 499–520.
    Paper not yet in RePEc: Add citation now
  10. Avramov, D. (2002). Stock return predictability and model uncertainty. Journal of Financial Economics, 64(3), 423–458.
    Paper not yet in RePEc: Add citation now
  11. Ayi Armah, N., & Swanson, N. R. (2010). Seeing inside the black box: Using diffusion index methodology to construct factor proxies in large scale macroeconomic time series environments. Econometric Reviews, 29(5‐6), 476–510.

  12. Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.

  13. Bai, J., & Ng, S. (2006a). Evaluating latent and observed factors in macroeconomics and finance. Journal of Econometrics, 131(1‐2), 507–537.

  14. Bai, J., & Ng, S. (2006b). Confidence intervals for diffusion index forecasts with a large number of predictors. Econometrica, 74(4), 11331150.
    Paper not yet in RePEc: Add citation now
  15. Barrow, D. K., & Crone, S. F. (2016). A comparison of adaboost algorithms for time series forecast combination. International Journal of Forecasting, 32(4), 1103–1119.

  16. Barrow, D. K., Crone, S. F., & Kourentzes, N. (2010). An evaluation of neural network ensembles and model selection for time series prediction. In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.
    Paper not yet in RePEc: Add citation now
  17. Basu, S., & Michailidis, G. (2015). Regularized estimation in sparse high‐dimensional time series models. The Annals of Statistics, 43(4), 1535–1567.
    Paper not yet in RePEc: Add citation now
  18. Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. operations research quaterly, v. 20.
    Paper not yet in RePEc: Add citation now
  19. Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning, 36(1‐2), 105–139.
    Paper not yet in RePEc: Add citation now
  20. Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. International journal of forecasting, 32(2), 303–312.

  21. Bou‐Hamad, I., & Jamali, I. (2020). Forecasting financial time‐series using data mining models: A simulation study. Research in International Business and Finance, 51, 101072.

  22. Breiman, L. (1996a). Bagging predictors. Machine learning, 24(2), 123–140.
    Paper not yet in RePEc: Add citation now
  23. Breiman, L. (1996b). Stacked regressions. Machine learning, 24(1), 49–64.
    Paper not yet in RePEc: Add citation now
  24. Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of finance, 47(5), 1731–1764.

  25. Brown, G. (2004). Diversity in neural network ensembles. (Ph.D. Thesis).
    Paper not yet in RePEc: Add citation now
  26. Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: A survey and categorisation. Information Fusion, 6(1), 5–20.
    Paper not yet in RePEc: Add citation now
  27. Brown, T. A. (1974). Admissible scoring systems for continuous distributions.
    Paper not yet in RePEc: Add citation now
  28. Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli, 3(2), 123–148.
    Paper not yet in RePEc: Add citation now
  29. Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477–505.
    Paper not yet in RePEc: Add citation now
  30. Bühlmann, P., & Yu, B. (2002). Analyzing bagging. The Annals of Statistics, 30(4), 927–961.
    Paper not yet in RePEc: Add citation now
  31. Buja, A., & Stuetzle, W. (2006). Observations on bagging. Statistica Sinica, 16(2), 323.
    Paper not yet in RePEc: Add citation now
  32. Bunn, D. W. (1975). A bayesian approach to the linear combination of forecasts. Journal of the Operational Research Society, 26(2), 325–329.
    Paper not yet in RePEc: Add citation now
  33. Bunn, D. W. (1985). Statistical efficiency in the linear combination of forecasts. International Journal of Forecasting, 1(2), 151–163.

  34. Chan, Y. L., Stock, J. H., & Watson, M. W. (1999). A dynamic factor model framework for forecast combination. Spanish Economic Review, 1(2), 91–121.

  35. Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: extreme gradient boosting. R package version 0.4‐2, 1–4.
    Paper not yet in RePEc: Add citation now
  36. Christoffersen, P. F., & Diebold, F. X. (2006). Financial asset returns, direction‐of‐change forecasting, and volatility dynamics. Management Science, 52(8), 1273–1287.

  37. Clement, M. P., & Hendry, D. F. (1998). Forecasting economic times series. Cambridge University Press.

  38. Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). Stl: A seasonal‐trend decomposition. Journal of official statistics, 6(1), 3–73.
    Paper not yet in RePEc: Add citation now
  39. Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223–236.

  40. Cordeiro, C., & Neves, M. M. (2009). Forecasting time series with boot. expos procedure. REVSTAT‐Statistical Journal, 7(2), 135–149.
    Paper not yet in RePEc: Add citation now
  41. Cremers, K. J. M. (2002). Stock return predictability: A Bayesian model selection perspective. The Review of Financial Studies, 15(4), 1223–1249.
    Paper not yet in RePEc: Add citation now
  42. Davis, R. A., Drees, H., Segers, J., & Warchoł, M. (2018). Inference on the tail process with application to financial time series modeling. Journal of Econometrics, 205(2), 508–525.

  43. Day, R. H., & Huang, W. (1990). Bulls, bears and market sheep. Journal of Economic Behavior & Organization, 14(3), 299–329.

  44. De Menezes, L. M., Bunn, D. W., & Taylor, J.W. (2000). Review of guidelines for the use of combined forecasts. European Journal of Operational Research, 120(1), 190–204.

  45. Drucker, H. (1997). Improving regressors using boosting techniques. In Icml 97 (107–115).
    Paper not yet in RePEc: Add citation now
  46. Duffy, N., & Helmbold, D. P. (2000). Leveraging for regression. In Colt (208–219).
    Paper not yet in RePEc: Add citation now
  47. e Silva, P. C. L., Junior, C. A. S., Alves, M. A., Silva, R., Cohen, M.W., & Guimarães, F. G. (2020). Forecasting in non‐stationary environments with fuzzy time series. Applied Soft Computing, 97, 106825.
    Paper not yet in RePEc: Add citation now
  48. Eğrioğlu, E., & Fildes, R. (2020). A new bootstrapped hybrid artificial neural network approach for time series forecasting. Computational Economics, 1–29.
    Paper not yet in RePEc: Add citation now
  49. Elliott, G., Komunjer, I., & Timmermann, A. (2008). Biases in macroeconomic forecasts: Irrationality or asymmetric loss? Journal of the European Economic Association, 6(1), 122–157.

  50. Elliott, G., Timmermann, A., & Komunjer, I. (2003). Estimating loss function parameters.

  51. Erdal, H., & Karahanoğlu, I. (2016). Bagging ensemble models for bank profitability: An emprical research on turkish development and investment banks. Applied Soft Computing, 49, 861–867.
    Paper not yet in RePEc: Add citation now
  52. Evgeniou, T., Pontil, M., & Elisseeff, A. (2004). Leave one out error, stability, and generalization of voting combinations of classifiers. Machine learning, 55(1), 71–97.
    Paper not yet in RePEc: Add citation now
  53. Fitzenberger, B. (1998). The moving blocks bootstrap and robust inference for linear least squares and quantile regressions. Journal of Econometrics, 82(2), 235–287.

  54. Frank, E., & Pfahringer, B. (2006). Improving on bagging with input smearing, Pacific‐Asia conference on knowledge discovery and data mining (pp. 97–106). Springer.
    Paper not yet in RePEc: Add citation now
  55. Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In ICML (Vol. 96, pp. 148–156). Citeseer.
    Paper not yet in RePEc: Add citation now
  56. Freund, Y., & Schapire, R. E. (1997). A decision‐theoretic generalization of on‐line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119–139.
    Paper not yet in RePEc: Add citation now
  57. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics, 1189–1232.
    Paper not yet in RePEc: Add citation now
  58. Friedman, J. H., & Hall, P. (2007). On bagging and nonlinear estimation. Journal of statistical planning and inference, 137(3), 669–683.
    Paper not yet in RePEc: Add citation now
  59. Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2), 337–407.
    Paper not yet in RePEc: Add citation now
  60. Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society: Series B (Methodological), 14(1), 107–114.
    Paper not yet in RePEc: Add citation now
  61. Grandvalet, Y. (2000). Bagging down‐weights leverage points. In Proceedings of the IEEE‐INNS‐ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 4, pp. 505–510). IEEE.
    Paper not yet in RePEc: Add citation now
  62. Grandvalet, Y. (2004). Bagging equalizes influence. Machine Learning, 55(3), 251–270.
    Paper not yet in RePEc: Add citation now
  63. Granger, C. W. J. (1969). Prediction with a generalized cost of error function. Journal of the Operational Research Society, 20(2), 199–207.
    Paper not yet in RePEc: Add citation now
  64. Granger, C. W. J. (1999). Outline of forecast theory using generalized cost functions. Spanish Economic Review, 1(2), 161–173.

  65. Granger, C. W. J. (2002). Some comments on risk. Journal of Applied Econometrics, 17(5), 447–456.

  66. Granger, C. W. J., & Pesaran, M. H. (2000). Economic and statistical measures of forecast accuracy. Journal of Forecasting, 19(7), 537–560.
    Paper not yet in RePEc: Add citation now
  67. Granger, C. W. J., & Ramanathan, R. (1984). Improved methods of combining forecasts. Journal of forecasting, 3(2), 197–204.
    Paper not yet in RePEc: Add citation now
  68. Guerrero, V. M. (1993). Time‐series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48.
    Paper not yet in RePEc: Add citation now
  69. Gumelar, A. B., Setyorini, H., Adi, D. P., Nilowardono, S., Widodo, A., Wibowo, A. T., Sulistyono, M. Y. T., & Christine, E. (2020). Boosting the accuracy of stock market prediction using xgboost and long short‐term memory. In 2020 International Seminar on Application for Technology of Information and Communication (ISEMANTIC) (pp. 609–613). IEEE.
    Paper not yet in RePEc: Add citation now
  70. Gyamerah, S. A., Ngare, P., & Ikpe, D. (2019). On stock market movement prediction via stacking ensemble learning method. In 2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFER) (pp. 1–8). IEEE.
    Paper not yet in RePEc: Add citation now
  71. Haimovich, A., Ravindra, N. G., Stoytchev, S., Young, H. P., PerryWilson, F., van Dijk, D., Schulz, W. L., & Taylor, R. A. (2020). Development and validation of the quick Covid‐19 severity index (QCSI): A prognostic tool for early clinical decompensation. Annals of Emergency Medicine, 76, 442.
    Paper not yet in RePEc: Add citation now
  72. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction: Springer Science & Business Media.
    Paper not yet in RePEc: Add citation now
  73. Huang, H., & Lee, T.‐H. (2010). To combine forecasts or to combine information? Econometric Reviews, 29(5‐6), 534–570.

  74. Inoue, A., & Kilian, L. (2004). Bagging time series models.

  75. Inoue, A., & Kilian, L. (2008). How useful is bagging in forecasting economic time series? A case study of us consumer price inflation. Journal of the American Statistical Association, 103(482), 511–522.

  76. Jabeur, S. B., Mefteh‐Wali, S., & Viviani, J.‐L. (2021). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Annals of Operations Research, 1–21.

  77. Jensen, M. C., & Benington, G. A. (1970). Random walks and technical theories: Some additional evidence. The Journal of Finance, 25(2), 469–482.

  78. Jiang, M., Liu, J., Zhang, L., & Liu, C. (2020). An improved stacking framework for stock index prediction by leveraging tree‐based ensemble models and deep learning algorithms. Physica A: Statistical Mechanics and its Applications, 541, 122272.

  79. Jin, S., Su, L., & Ullah, A. (2014). Robustify financial time series forecasting with bagging. Econometric Reviews, 33(5‐6), 575–605.

  80. Johansson, U., Löfström, T., & Niklasson, L. (2008). Evaluating standard techniques for implicit diversity. Pacific‐Asia Conference on Knowledge Discovery and Data Mining, 5012, 592–599.
    Paper not yet in RePEc: Add citation now
  81. Johnson, N. E., Ianiuk, O., Cazap, D., Liu, L., Starobin, D., Dobler, G., & Ghandehari, M. (2017). Patterns of waste generation: A gradient boosting model for short‐term waste prediction in new york city. Waste management, 62, 3–11.
    Paper not yet in RePEc: Add citation now
  82. Jordan, S. J., Vivian, A., & Wohar, M. E. (2017). Forecasting market returns: bagging or combining? International Journal of Forecasting, 33(1), 102–120.

  83. Jose, V. R. R., & Winkler, R. L. (2008). Simple robust averages of forecasts: Some empirical results. International Journal of Forecasting, 24(1), 163–169.

  84. Kearns, M. J., Vazirani, U. V., & Vazirani, U. (1994). An introduction to computational learning theory. MIT press.
    Paper not yet in RePEc: Add citation now
  85. Kleinberg, J., Ludwig, J., Mullainathan, S., & Obermeyer, Z. (2015). Prediction policy problems. American Economic Review, 105(5), 491–95.

  86. Koop, G., & Potter, S. (2004). Forecasting in dynamic factor models using Bayesian model averaging. The Econometrics Journal, 7(2), 550–565.

  87. Kourentzes, N., Barrow, D. K., & Crone, S. F. (2014). Neural network ensemble operators for time series forecasting. Expert Systems with Applications, 41(9), 4235–4244.
    Paper not yet in RePEc: Add citation now
  88. Kourentzes, N., Petropoulos, F., & Trapero, J. R. (2014). Improving forecasting by estimating time series structural components across multiple frequencies. International Journal of Forecasting, 30(2), 291–302.

  89. Krogh, A., & Sollich, P. (1997). Statistical mechanics of ensemble learning. Physical Review E, 55(1), 811.
    Paper not yet in RePEc: Add citation now
  90. Krstanovic, S., & Paulheim, H. (2017). Ensembles of recurrent neural networks for robust time series forecasting, International Conference on Innovative Techniques and Applications of Artificial Intelligence (pp. 34–46). Springer.
    Paper not yet in RePEc: Add citation now
  91. Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2), 181–207.
    Paper not yet in RePEc: Add citation now
  92. Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The annals of Statistics, 1217–1241.
    Paper not yet in RePEc: Add citation now
  93. Lai, K. K., Yu, L., Wang, S., & Wei, H. (2006). A novel nonlinear neural network ensemble model for financial time series forecasting, International conference on computational science (pp. 790–793). Springer.
    Paper not yet in RePEc: Add citation now
  94. Lee, T.‐H., & Yang, Y. (2006). Bagging binary and quantile predictors for time series. Journal of econometrics, 135(1‐2), 465–497.

  95. Lehmann, E. L., & Casella, G. (2006). Theory of point estimation: Springer Science & Business Media.
    Paper not yet in RePEc: Add citation now
  96. Lemke, C., & Gabrys, B. (2010). Meta‐learning for time series forecasting and forecast combination. Neurocomputing, 73(10‐12), 2006–2016.
    Paper not yet in RePEc: Add citation now
  97. Liang, D., Tsai, C.‐F., Dai, A.‐J., & Eberle, W. (2018). A novel classifier ensemble approach for financial distress prediction. Knowledge and Information Systems, 54(2), 437–462.
    Paper not yet in RePEc: Add citation now
  98. Liang, D., Tsai, C.‐F., Lu, H.‐Y. R., & Chang, L.‐S. (2020). Combining corporate governance indicators with stacking ensembles for financial distress prediction. Journal of Business Research, 120, 137–146.

  99. Liu, J., Lin, C.‐M. M., & Chao, F. (2019). Gradient boost with convolution neural network for stock forecast, Uk workshop on computational intelligence (pp. 155–165). Springer.

  100. Liu, Y., & Yao, X. (1999). Ensemble learning via negative correlation. Neural networks, 12(10), 1399–1404.
    Paper not yet in RePEc: Add citation now
  101. Lopez‐Martin, M., Carro, B., & Sanchez‐Esguevillas, A. (2019). Neural network architecture based on gradient boosting for iot traffic prediction. Future Generation Computer Systems, 100, 656–673.
    Paper not yet in RePEc: Add citation now
  102. Malki, Z., Atlam, E.‐S., Hassanien, A. E., Dagnew, G., Elhosseini, M. A., & Gad, I. (2020). Association between weather data and covid‐19 pandemic predicting mortality rate: Machine learning approaches. Chaos, Solitons & Fractals, 138, 110137.

  103. Mallows, C. (1991). Another comment on O'Cinneide. The American Statistician, 45(3), 257.
    Paper not yet in RePEc: Add citation now
  104. Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. R. (2000). Boosting algorithms as gradient descent. In Advances in Neural Information Processing Systems (pp. 512–518).
    Paper not yet in RePEc: Add citation now
  105. Matheson, J. E., & Winkler, R. L. (1976). Scoring rules for continuous probability distributions. Management science, 22(10), 1087–1096.

  106. McNees, S. K. (1992). The uses and abuses of ‘consensus’ forecasts. Journal of Forecasting, 11(8), 703–710.
    Paper not yet in RePEc: Add citation now
  107. Melville, P., Shah, N., Mihalkova, L., & Mooney, R. J. (2004). Experiments on ensembles with missing and noisy data, International workshop on multiple classifier systems (pp. 293–302). Springer.
    Paper not yet in RePEc: Add citation now
  108. Min, C., & Zellner, A. (1993). Bayesian and non‐Bayesian methods for combining models and forecasts with applications to forecasting international growth rates. Journal of Econometrics, 56(1‐2), 89–118.

  109. Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87–106.

  110. Negahban, S. N., Ravikumar, P., Wainwright, M. J., & Yu, B. (2012). A unified framework for high‐dimensional analysis of m‐estimators with decomposable regularizers. Statistical Science, 27(4), 538–557.
    Paper not yet in RePEc: Add citation now
  111. Nguyen, H. M., Woo, S., Im, J., Jun, T., & Kim, D. (2016). A workload prediction approach using models stacking based on recurrent neural network and autoencoder. In 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS) (pp. 929–936). IEEE.
    Paper not yet in RePEc: Add citation now
  112. Niblett, A. (2018). Regulatory reform in ontario: Machine learning and regulation. CD Howe Institute Commentary, 507.

  113. Nolan, J. P. (2003). Modeling financial data with stable distributions, Handbook of heavy tailed distributions in finance (pp. 105–130). Elsevier.
    Paper not yet in RePEc: Add citation now
  114. Oliveira, M. R., & Torgo, L. (2014). Ensembles for time series forecasting.
    Paper not yet in RePEc: Add citation now
  115. Paulin, J., Calinescu, A., & Wooldridge, M. (2018). Agent‐based modeling for complex financial systems. IEEE Intelligent Systems, 33(2), 74–82.
    Paper not yet in RePEc: Add citation now
  116. Pavlyshenko, B. (2018). Using stacking approaches for machine learning models. In 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP) (pp. 255–258). IEEE.
    Paper not yet in RePEc: Add citation now
  117. Pesaran, M. H., Pettenuzzo, D., & Timmermann, A. (2006). Forecasting time series subject to multiple structural breaks. The Review of Economic Studies, 73(4), 1057–1084.

  118. Petropoulos, F., Hyndman, R. J., & Bergmeir, C. (2018). Exploring the sources of uncertainty: Why does bagging for time series forecasting work? European Journal of Operational Research, 268(2), 545–554.

  119. Politis, D. N., & Romano, J. P. (1992). A circular block‐resampling procedure for stationary data. Exploring the limits of bootstrap, 2635270.
    Paper not yet in RePEc: Add citation now
  120. Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical association, 89(428), 1303–1313.
    Paper not yet in RePEc: Add citation now
  121. Rapach, D. E., & Strauss, J. K. (2010). Bagging or combining (or both)? an analysis based on forecasting us employment growth. Econometric Reviews, 29(5‐6), 511–533.

  122. Ratto, A. P., Merello, S., Oneto, L., Ma, Y., Malandri, L., & Cambria, E. (2018). Ensemble of technical analysis and machine learning for market trend prediction. In 2018 IEEE symposium series on computational intelligence (ssci) (pp. 2090–2096). IEEE.
    Paper not yet in RePEc: Add citation now
  123. Ribeiro, M. H. D. M., & dos Santos Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short‐term prediction in agribusiness time series. Applied Soft Computing, 86, 105837.
    Paper not yet in RePEc: Add citation now
  124. Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics, 172–181.
    Paper not yet in RePEc: Add citation now
  125. Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2), 197–227.
    Paper not yet in RePEc: Add citation now
  126. Scott, A. J. (2001). Combining forecasts. principles of forecasting. A Handbook for Researchers and Practitioners.
    Paper not yet in RePEc: Add citation now
  127. Seber, G. A. F., & Lee, A. J. (2012). Linear regression analysis (Vol. 329). John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  128. Severino, M. K., & Peng, Y. (2021). Machine learning algorithms for fraud prediction in property insurance: Empirical evidence using real‐world microdata. Machine Learning with Applications, 5, 100074.
    Paper not yet in RePEc: Add citation now
  129. Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Association, 105(489), 218–235.

  130. Shi, L., Xi, L., Ma, X., & Hu, X. (2009). Bagging of artificial neural networks for bankruptcy prediction. In 2009 International Conference on Information and Financial Engineering (pp. 154–156). IEEE.
    Paper not yet in RePEc: Add citation now
  131. Shrestha, D. L., & Solomatine, D. P. (2006). Experiments with adaboost. rt, an improved boosting scheme for regression. Neural computation, 18(7), 1678–1710.
    Paper not yet in RePEc: Add citation now
  132. Smyth, P., & Wolpert, D. (1999). Linearly combining density estimators via stacking. Machine Learning, 36(1‐2), 59–83.
    Paper not yet in RePEc: Add citation now
  133. Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147–162.

  134. Stock, J. H., & Watson, M. W. (2003). Forecasting output and inflation: The role of asset prices. Journal of Economic Literature, 41(3), 788–829.

  135. Stock, J. H., & Watson, M. W. (2004). Combination forecasts of output growth in a seven‐country data set. Journal of forecasting, 23(6), 405–430.
    Paper not yet in RePEc: Add citation now
  136. Stock, J. H., & Watson, M. W. (2012). Generalized shrinkage methods for forecasting using many predictors. Journal of Business & Economic Statistics, 30(4), 481–493.

  137. Sullivan, R., Timmermann, A., & White, H. (1999). Data‐snooping, technical trading rule performance, and the bootstrap. The journal of Finance, 54(5), 1647–1691.
    Paper not yet in RePEc: Add citation now
  138. Sun, S., Wang, S., Wei, Y., & Zhang, G. (2018). A clustering‐based nonlinear ensemble approach for exchange rates forecasting. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
    Paper not yet in RePEc: Add citation now
  139. Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting, 1, 135–196.

  140. Tsai, C.‐F. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. Information Fusion, 16, 46–58.
    Paper not yet in RePEc: Add citation now
  141. Ueda, N., & Nakano, R. (1996). Generalization error of ensemble estimators. In Proceedings of International Conference on Neural Networks (ICNN'96) (Vol. 1, pp. 90–95). IEEE.
    Paper not yet in RePEc: Add citation now
  142. Valiant, L. G. (1984). A theory of the learnable. In Proceedings of the sixteenth annual ACM symposium on theory of computing (pp. 436–445). ACM.
    Paper not yet in RePEc: Add citation now
  143. Vapnik, V. (2013). The nature of statistical learning theory: Springer science & business media.
    Paper not yet in RePEc: Add citation now
  144. Vrugt, J. A., Clark, M. P., Diks, C. G. H., Duan, Q., & Robinson, B. A. (2006). Multi‐objective calibration of forecast ensembles using bayesian model averaging. Geophysical Research Letters, 33(19).
    Paper not yet in RePEc: Add citation now
  145. Wang, Q., Xu, W., & Zheng, H. (2018). Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles. Neurocomputing, 299, 51–61.
    Paper not yet in RePEc: Add citation now
  146. Wang, X., & Zhang, Y. (2020). Multi‐step‐ahead time series prediction method with stacking lstm neural network. In 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 51–55). IEEE.
    Paper not yet in RePEc: Add citation now
  147. Wei, S., Yang, D., Zhang, W., & Zhang, S. (2019). A novel noise‐adapted two‐layer ensemble model for credit scoring based on backflow learning. IEEE Access, 7, 99,217–99,230.
    Paper not yet in RePEc: Add citation now
  148. Welch, I., & Goyal, A. (2007). A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies, 21(4), 1455–1508.
    Paper not yet in RePEc: Add citation now
  149. Wichard, J., Merkwirth, C., & Ogorzalek, M. (2003). Building ensembles with heterogeneous models.
    Paper not yet in RePEc: Add citation now
  150. Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241–259.
    Paper not yet in RePEc: Add citation now
  151. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67–82.
    Paper not yet in RePEc: Add citation now
  152. Wright, J. H. (2008). Bayesian model averaging and exchange rate forecasts. Journal of Econometrics, 146(2), 329–341.

  153. Wright, J. H. (2009). Forecasting us inflation by Bayesian model averaging. Journal of Forecasting, 28(2), 131–144.

  154. Xia, Y., Liu, C., Da, B., & Xie, F. (2018). A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Systems with Applications, 93, 182–199.
    Paper not yet in RePEc: Add citation now
  155. Yang, K., Tian, F., Chen, L., & Li, S. (2017). Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches. International Review of Economics & Finance, 49, 276–291.

  156. Yang, Y. (2001). Adaptive regression by mixing. Journal of the American Statistical Association, 96(454), 574–588.

  157. Yang, Y. (2003). Regression with multiple candidate models: Selecting or mixing? Statistica Sinica, 783–809.
    Paper not yet in RePEc: Add citation now
  158. Yang, Y. (2004). Combining forecasting procedures: Some theoretical results. Econometric Theory, 20(1), 176–222.

  159. Yeo, I.‐K., & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87(4), 954–959.
    Paper not yet in RePEc: Add citation now
  160. Yin, A. (2020). Equity premium prediction and optimal portfolio decision with bagging. The North American Journal of Economics and Finance, 54, 101274.

  161. Yumlu, M. S., Gurgen, F. S., & Okay, N. (2003). Financial time series prediction using mixture of experts. In International Symposium on Computer and Information Sciences (pp. 553–560). Springer.
    Paper not yet in RePEc: Add citation now
  162. Zemel, R. S., & Pitassi, T. (2001). A gradient‐based boosting algorithm for regression problems. In Advances in neural information processing systems, pp. 696–702.
    Paper not yet in RePEc: Add citation now
  163. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175.
    Paper not yet in RePEc: Add citation now
  164. Zou, H., & Yang, Y. (2004). Combining time series models for forecasting. International journal of Forecasting, 20(1), 69–84.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?. (2015). Mogliani, Matteo ; Bec, Frédérique.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:31:y:2015:i:4:p:1021-1042.

    Full description at Econpapers || Download paper

  2. Sticky prices or economically-linked economies: The case of forecasting the Chinese stock market. (2014). Wohar, Mark ; Vivian, Andrew ; Jordan, Steven J..
    In: Journal of International Money and Finance.
    RePEc:eee:jimfin:v:41:y:2014:i:c:p:95-109.

    Full description at Econpapers || Download paper

  3. Is there an optimal forecast combination?. (2014). hsiao, cheng ; Wan, Shui Ki .
    In: Journal of Econometrics.
    RePEc:eee:econom:v:178:y:2014:i:p2:p:294-309.

    Full description at Econpapers || Download paper

  4. Mining Big Data Using Parsimonious Factor and Shrinkage Methods. (2013). Swanson, Norman ; Kim, Hyun Hak.
    In: Departmental Working Papers.
    RePEc:rut:rutres:201316.

    Full description at Econpapers || Download paper

  5. El sistema de predicción desagregada: Una evaluación de las proyecciones de inflación 2006-2011. (2013). Barrera-Chaupis, Carlos.
    In: Working Papers.
    RePEc:rbp:wpaper:2013-009.

    Full description at Econpapers || Download paper

  6. Does housing drive state-level job growth? Building permits and consumer expectations forecast a state’s economic activity. (2013). Strauss, Jack.
    In: Journal of Urban Economics.
    RePEc:eee:juecon:v:73:y:2013:i:1:p:77-93.

    Full description at Econpapers || Download paper

  7. Adaptive forecasting of exchange rates with panel data. (2013). Moura, Guilherme ; Morales-Arias, Leonardo .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:29:y:2013:i:3:p:493-509.

    Full description at Econpapers || Download paper

  8. Combining expert forecasts: Can anything beat the simple average?. (2013). Meyler, Aidan ; Kenny, Geoff ; Genre, Veronique ; Timmermann, Allan.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:29:y:2013:i:1:p:108-121.

    Full description at Econpapers || Download paper

  9. Nowcasting French GDP in Real-Time from Survey Opinions : Information or Forecast Combinations ?. (2013). Mogliani, Matteo ; Bec, Frédérique.
    In: Working Papers.
    RePEc:crs:wpaper:2013-21.

    Full description at Econpapers || Download paper

  10. Forecasting with Many Models: Model Confidence Sets and Forecast Combination. (2013). Samuels, Jon D. ; Sekkel, Rodrigo.
    In: Staff Working Papers.
    RePEc:bca:bocawp:13-11.

    Full description at Econpapers || Download paper

  11. Volatility Forecast Combinations using Asymmetric Loss Functions. (2012). Kourouyiannis, Constantinos ; Kourtellos, Andros ; Andreou, Elena.
    In: University of Cyprus Working Papers in Economics.
    RePEc:ucy:cypeua:07-2012.

    Full description at Econpapers || Download paper

  12. Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program. (2012). Hayashi, Masayoshi.
    In: CIRJE F-Series.
    RePEc:tky:fseres:2012cf846.

    Full description at Econpapers || Download paper

  13. Real-time forecasting in a data-rich environment. (2012). Liebermann, Joëlle.
    In: MPRA Paper.
    RePEc:pra:mprapa:39452.

    Full description at Econpapers || Download paper

  14. A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables. (2012). Marcellino, Massimiliano ; Foroni, Claudia.
    In: Economics Working Papers.
    RePEc:eui:euiwps:eco2012/07.

    Full description at Econpapers || Download paper

  15. Forecasting the Prices and Rents for Flats in Large German Cities. (2012). Kholodilin, Konstantin ; Mense, Andreas.
    In: Discussion Papers of DIW Berlin.
    RePEc:diw:diwwpp:dp1207.

    Full description at Econpapers || Download paper

  16. Are Forecast Combinations Efficient?. (2012). Pincheira, Pablo.
    In: Working Papers Central Bank of Chile.
    RePEc:chb:bcchwp:661.

    Full description at Econpapers || Download paper

  17. Real-time forecasting in a data-rich environment. (2012). Liebermann, Joëlle.
    In: Research Technical Papers.
    RePEc:cbi:wpaper:07/rt/12.

    Full description at Econpapers || Download paper

  18. Short-term forecasting of quarterly gross domestic product growth. (2012). Liebermann, Joëlle.
    In: Quarterly Bulletin Articles.
    RePEc:cbi:qtbart:y:2012:m:02:p:74-84.

    Full description at Econpapers || Download paper

  19. Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors. (2011). Uwilingiye, Josine ; GUPTA, RANGAN ; Modise, Mampho P..
    In: Working Papers.
    RePEc:pre:wpaper:201122.

    Full description at Econpapers || Download paper

  20. Evaluating density forecasts: model combination strategies versus the RBNZ. (2011). Thorsrud, Leif ; McDonald, Chris .
    In: Reserve Bank of New Zealand Discussion Paper Series.
    RePEc:nzb:nzbdps:2011/03.

    Full description at Econpapers || Download paper

  21. Combining Survey Forecasts and Time Series Models: The Case of the Euribor. (2011). Pohlmeier, Winfried ; Mokinski, Frieder ; Krueger, Fabian .
    In: Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik).
    RePEc:jns:jbstat:v:231:y:2011:i:1:p:63-81.

    Full description at Econpapers || Download paper

  22. Combination of long term and short term forecasts, with application to tourism demand forecasting. (2011). Atiya, Amir F. ; Andrawis, Robert R. ; El-Shishiny, Hisham .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:27:y::i:3:p:870-886.

    Full description at Econpapers || Download paper

  23. Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. (2011). Atiya, Amir F. ; Andrawis, Robert R. ; El-Shishiny, Hisham .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:27:y::i:3:p:672-688.

    Full description at Econpapers || Download paper

  24. Advances in Forecasting Under Instability. (2011). Rossi, Barbara.
    In: Working Papers.
    RePEc:duk:dukeec:11-20.

    Full description at Econpapers || Download paper

  25. Nowcasting GDP in Real-Time: A Density Combination Approach. (2011). Thorsrud, Leif ; Jore, Anne Sofie ; Aastveit, Knut Are ; Gerdrup, Karsten R..
    In: Working Papers.
    RePEc:bny:wpaper:0003.

    Full description at Econpapers || Download paper

  26. Adaptive Forecasting of Exchange Rates with Panel Data. (2010). Dross, Alexander ; Morales-Arias, Leonardo .
    In: Research Paper Series.
    RePEc:uts:rpaper:285.

    Full description at Econpapers || Download paper

  27. Should macroeconomic forecasters use daily financial data and how?. (2010). Kourtellos, Andros ; Andreou, Elena ; Ghysels, Eric.
    In: University of Cyprus Working Papers in Economics.
    RePEc:ucy:cypeua:09-2010.

    Full description at Econpapers || Download paper

  28. Should Macroeconomic Forecasters Use Daily Financial Data and How?. (2010). Kourtellos, Andros ; Andreou, Elena ; Ghysels, Eric.
    In: Working Paper series.
    RePEc:rim:rimwps:42_10.

    Full description at Econpapers || Download paper

  29. Averaging forecasts from VARs with uncertain instabilities. (2010). McCracken, Michael ; Clark, Todd.
    In: Journal of Applied Econometrics.
    RePEc:jae:japmet:v:25:y:2010:i:1:p:5-29.

    Full description at Econpapers || Download paper

  30. Stock return predictability and dividend-price ratio: a nonlinear approach. (2010). Wohar, Mark ; McMillan, David G..
    In: International Journal of Finance & Economics.
    RePEc:ijf:ijfiec:v:15:y:2010:i:4:p:351-365.

    Full description at Econpapers || Download paper

  31. Real-time forecast averaging with ALFRED. (2010). McCracken, Michael ; Banternghansa, Chanont .
    In: Working Papers.
    RePEc:fip:fedlwp:2010-033.

    Full description at Econpapers || Download paper

  32. Does forecast combination improve Norges Bank inflation forecasts?. (2010). Thorsrud, Leif ; Smith, Christie ; Jore, Anne Sofie ; Bjørnland, Hilde ; Bjornland, Hilde C. ; Gerdrup, Karsten R..
    In: Working Papers.
    RePEc:bny:wpaper:0002.

    Full description at Econpapers || Download paper

  33. Forecast Combinations. (2010). Timmermann, Allan ; Capistrán, Carlos ; Aiolfi, Marco .
    In: Working Papers.
    RePEc:bdm:wpaper:2010-04.

    Full description at Econpapers || Download paper

  34. Forecast Combinations. (2010). Timmermann, Allan ; Capistrán, Carlos ; Aiolfi, Marco .
    In: CREATES Research Papers.
    RePEc:aah:create:2010-21.

    Full description at Econpapers || Download paper

  35. Differences in housing price forecastability across US states. (2009). Strauss, Jack ; Rapach, David E..
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:25:y:2009:i:2:p:351-372.

    Full description at Econpapers || Download paper

  36. Forecasts of US short-term interest rates: A flexible forecast combination approach. (2009). Timmermann, Allan ; Guidolin, Massimo.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:150:y:2009:i:2:p:297-311.

    Full description at Econpapers || Download paper

  37. Flexible shrinkage in portfolio selection. (2009). Golosnoy, Vasyl ; Okhrin, Yarema.
    In: Journal of Economic Dynamics and Control.
    RePEc:eee:dyncon:v:33:y:2009:i:2:p:317-328.

    Full description at Econpapers || Download paper

  38. Forecasting Exchange Rate Volatility: The Superior Performance of Conditional Combinations of Time Series and Option Implied Forecasts. (2009). Capistrán, Carlos ; Benavides, Guillermo .
    In: Working Papers.
    RePEc:bdm:wpaper:2009-01.

    Full description at Econpapers || Download paper

  39. Monetary Policy Evaluation in Real Time: Forward-Looking Taylor Rules Without Forward-Looking Data. (2008). Nikolsko-Rzhevskyy, Alex.
    In: MPRA Paper.
    RePEc:pra:mprapa:11352.

    Full description at Econpapers || Download paper

  40. Averaging forecasts from VARs with uncertain instabilities. (2008). McCracken, Michael ; Clark, Todd.
    In: Working Papers.
    RePEc:fip:fedlwp:2008-030.

    Full description at Econpapers || Download paper

  41. Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance. (2007). Golosnoy, Vasyl ; Herwartz, Helmut.
    In: Economics Working Papers.
    RePEc:zbw:cauewp:5903.

    Full description at Econpapers || Download paper

  42. Predicting the term structure of interest rates incorporating parameter uncertainty, model uncertainty and macroeconomic information. (2007). van Dijk, Dick ; Ravazzolo, Francesco ; De Pooter, Michiel.
    In: MPRA Paper.
    RePEc:pra:mprapa:2512.

    Full description at Econpapers || Download paper

  43. Forecasting real housing price growth in the Eighth District states. (2007). Strauss, Jack ; Rapach, David E..
    In: Regional Economic Development.
    RePEc:fip:fedlrd:y:2007:i:nov:p:33-42:n:v.3no.2.

    Full description at Econpapers || Download paper

  44. Online forecast combinations of distributions: Worst case bounds. (2007). Sancetta, Alessio.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:141:y:2007:i:2:p:621-651.

    Full description at Econpapers || Download paper

  45. Online Forecast Combination for Dependent Heterogeneous Data. (2007). Sancetta, Alessio.
    In: Cambridge Working Papers in Economics.
    RePEc:cam:camdae:0718.

    Full description at Econpapers || Download paper

  46. Averaging forecasts from VARs with uncertain instabilities. (2006). McCracken, Michael ; Clark, Todd.
    In: Research Working Paper.
    RePEc:fip:fedkrw:rwp06-12.

    Full description at Econpapers || Download paper

  47. Forecasting employment growth in Missouri with many potentially relevant predictors: an analysis of forecast combining methods. (2005). Strauss, Jack ; Rapach, David E..
    In: Regional Economic Development.
    RePEc:fip:fedlrd:y:2005:i:nov:p:97-112:n:v.1no.1.

    Full description at Econpapers || Download paper

  48. Forecasting Time Series Subject to Multiple Structural Breaks. (2004). Timmermann, Allan ; Pettenuzzo, Davide ; Pesaran, M.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp1196.

    Full description at Econpapers || Download paper

  49. Forecasting Time Series Subject to Multiple Structural Breaks. (2004). Timmermann, Allan ; Pettenuzzo, Davide ; Pesaran, M.
    In: CESifo Working Paper Series.
    RePEc:ces:ceswps:_1237.

    Full description at Econpapers || Download paper

  50. ‘Forecasting Time Series Subject to Multiple Structural Breaks’. (2004). Timmermann, Allan ; Pettenuzzo, Davide ; Pesaran, M.
    In: Cambridge Working Papers in Economics.
    RePEc:cam:camdae:0433.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-02-25 00:13:55 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy