login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A078343
a(0) = -1, a(1) = 2; a(n) = 2*a(n-1) + a(n-2).
19
-1, 2, 3, 8, 19, 46, 111, 268, 647, 1562, 3771, 9104, 21979, 53062, 128103, 309268, 746639, 1802546, 4351731, 10506008, 25363747, 61233502, 147830751, 356895004, 861620759, 2080136522, 5021893803, 12123924128, 29269742059, 70663408246, 170596558551, 411856525348
OFFSET
0,2
COMMENTS
Inverse binomial transform of -1, 1, 6, 22, 76, 260, ... (see A111566). Binomial transform of -1, 3, -2, 6, -4, 12, -8, 24, -16, ... (see A162255). - R. J. Mathar, Oct 02 2012
REFERENCES
H. S. M. Coxeter, 1998, Numerical distances among the circles in a loxodromic sequence, Nieuw Arch. Wisk, 16, pp. 1-9.
LINKS
H. S. M. Coxeter, Numerical distances among the spheres in a loxodromic sequence, Math. Intell. 19(4) 1997 pp. 41-47. See page 41. See pp. 46-47.
Tanya Khovanova, Recursive Sequences.
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv:1212.1368 [cs.DM], 2012.
FORMULA
For the unsigned version: a(1)=1; a(2)=2; a(n) = Sum_{k=2..n-1} (a(k) + a(k-1)).
a(n) is asymptotic to (1/4)*(-2+3*sqrt(2))*(1+sqrt(2))^n.
a(n) = A048746(n-3) + 2, for n > 2. - Ralf Stephan, Oct 17 2003
a(n) = 2*A000129(n) - A000129(n-1) if n > 0; abs(a(n)) = Sum_{k=0..floor(n/2)} (C(n-k-1, k) - C(n-k-1, k-1))2^(n-2k). - Paul Barry, Dec 23 2004
O.g.f.: (1-4*x)/(-1 + 2*x + x^2). - R. J. Mathar, Feb 15 2008
a(n) = 4*Pell(n) - Pell(n+1), where Pell = A000129. - Vladimir Reshetnikov, Sep 27 2016
a(n) = -(-1)^n * A048654(-n) = ( (-2+3*sqrt(2))*(1+sqrt(2))^n + (-2-3*sqrt(2))*(1-sqrt(2))^n )/4 for all n in Z. - Michael Somos, Jun 30 2022
2*a(n+1)^2 = A048655(n)^2 + (-1)^n*7. - Philippe Deléham, Mar 07 2023
E.g.f.: 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2) - exp(x)*cosh(sqrt(2)*x). - Stefano Spezia, May 26 2024
EXAMPLE
G.f. = -1 + 2*x + 3*x^2 + 8*x^3 + 19*x^4 + 46*x^5 + 111*x^6 + ... - Michael Somos, Jun 30 2022
MAPLE
f:=proc(n) option remember; if n=0 then RETURN(-1); fi; if n=1 then RETURN(2); fi; 2*f(n-1)+f(n-2); end;
MATHEMATICA
Table[4 Fibonacci[n, 2] - Fibonacci[n + 1, 2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *)
LinearRecurrence[{2, 1}, {-1, 2}, 40] (* Harvey P. Dale, Apr 15 2019 *)
PROG
(Haskell)
a078343 n = a078343_list !! n
a078343_list = -1 : 2 : zipWith (+)
(map (* 2) $ tail a078343_list) a078343_list
-- Reinhard Zumkeller, Jan 04 2013
(PARI) a(n)=([0, 1; 1, 2]^n*[-1; 2])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)/(-1+2*x+x^2))); // G. C. Greubel, Jul 26 2018
KEYWORD
sign,easy
AUTHOR
Benoit Cloitre, Nov 22 2002
EXTENSIONS
Entry revised by N. J. A. Sloane, Apr 29 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy