login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A316672
Numbers k for which 120*k + 169 is a square.
7
-1, 0, 1, 3, 10, 14, 17, 22, 36, 43, 48, 56, 77, 87, 94, 105, 133, 146, 155, 169, 204, 220, 231, 248, 290, 309, 322, 342, 391, 413, 428, 451, 507, 532, 549, 575, 638, 666, 685, 714, 784, 815, 836, 868, 945, 979, 1002, 1037, 1121, 1158, 1183, 1221, 1312, 1352, 1379, 1420
OFFSET
1,4
COMMENTS
All terms of A303305 belong to this sequence.
FORMULA
O.g.f.: x*(-1 + x + x^2 + 2*x^3 + 9*x^4 + 2*x^5 + x^6 + x^7 - x^8)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2).
a(n) = a(1-n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9).
a(n) = (30*n^2 - 2*(15 + 3*(-1)^n + 10*i^(n*(n+1)))*n + 2*(5 + (-1)^n)*i^(n*(n+1)) + 3*(-1)^n - 79)/64, with i = sqrt(-1). Therefore:
a(4*k+1) = (3*k + 2)*(5*k - 1)/2;
a(4*k+2) = k*(15*k + 13)/2, first bisection of A303305;
a(4*k+3) = (k + 1)*(15*k + 2)/2, second bisection of A303305 (see A051869);
a(4*k+4) = (3*k + 1)*(5*k + 6)/2.
MAPLE
select(k->issqr(120*k+169), [$-1..1500]); # Muniru A Asiru, Jul 10 2018
MATHEMATICA
LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {-1, 0, 1, 3, 10, 14, 17, 22, 36}, 60]
PROG
(Magma) [k: k in [0..1500] | IsSquare(120*k+169)];
(Sage) print([k for k in (0..1500) if is_square(120*k+169)])
(PARI) isok(n) = issquare(120*n+169); \\ Michel Marcus, Jul 11 2018
(PARI) Vec(x*(-1 + x + x^2 + 2*x^3 + 9*x^4 + 2*x^5 + x^6 + x^7 - x^8)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2) + O(x^40)) \\ Colin Barker, Jul 18 2018
CROSSREFS
Subsequence of A047283.
Cf. Numbers k for which 8*(2*h+1)*k + (2*h-1)^2 is a square: A000217 (h=0), A001318 (h=1), A085787 (h=2), A118277 (h=3), A195160 (h=4), A195313 (h=5), A277082 (h=6), this sequence (h=7), A303813 (h=8), A303298 (h=9); A303815 (h=13).
Sequence in context: A085776 A289106 A289018 * A288993 A190706 A146309
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, Jul 10 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy