The Multivariate Adaptive Constructed Analogs(MACA)(Abatzoglou, Brown, 2011) method is a statistical downscaling method which utilizes a training dataset (i.e. a meteorological observation dataset) to remove historical biases and match spatial patterns in climate model output.

We have used MACA to downscale the model output from 20 global climate models (GCMs) of the Coupled Model Inter-Comparison Project 5 (CMIP5) for the historical GCM forcings (1950-2005) and the future Representative Concentration Pathways (RCPs) RCP 4.5 and RCP8.5 scenarios (2006-2100) from the native resolution of the GCMS to either 4-km or ~6-km.

The MACA dataset is unique in that it downscales a large set of variables making it ideal for different kinds of modeling of future climate (i.e. hydrology, ecology, vegetation, fire, wind). We currently have data for the following variables:
  • tasmax - Maximum daily temperature near surface (2 m)
  • tasmin - Minimum daily temperature near surface (2 m)
  • rhsmax - Maximum daily relative humidity near surface (2 m)
  • rhsmin - Minimum daily relative humdity near surface (2 m)
  • huss - Average daily specific humidity near surface (2 m)
  • pr - Average daily precipitation amount at surface
  • rsds- Average daily downward shortwave radiation at surface
  • was - Average daily wind speed near surface (10 m)
  • uas - Average daily eastward component of wind near surface (10 m)
  • vas - Average daily northward component of wind near surface (10 m)
We are currently dispensing 3 data products: MACAv1-METDATA, MACAv2-METDATA and MACAv2-LIVNEH.
  • MACAv1-METDATA is available for the Western USA, while MACAv2-LIVNEH/MACAv2-METDATA are available over the entire coterminous USA.
  • MACAv2-LIVNEH/MACAv2-METDATA both use the newest version of the MACA method (version 2), while MACAv1-METDATA uses version 1. Both methods are very similar to that described by Abatzoglou and Brown, 2011.



About MACA

The MACA method is a statistical downscaling method for removing biases from global climate model outputs.

We have used MACA to downscale the model output from 20 global climate models (GCMs) of the Coupled Model Inter-Comparison Project 5 (CMIP5) for the historical GCM forcings (1950-2005) and the future Representative Concentration Pathways (RCPs) RCP 4.5 and RCP8.5 scenarios (2006-2100) from the native resolution of the GCMS to either 4-km or ~6-km.

The MACA dataset is unique in that it downscales a large set of variables(temperature, precipitation, humidity, wind, radiation) making it ideal for different kinds of modeling of future climate (i.e. hydrology, ecology, vegetation, fire, wind).



Image holder

  • Map Summaries of Future Climate
  • Time Series of Climate Data
  • Scatterplot Summaries of Future Climate
  • Boxplot Summaries of Future Climate






Image holder

  • Design-Your-Own CSV of Data in text format
  • GIS summary layers in geoTIFF format
  • Data Subsets in netCDF format
  • Scripts to batch process downloads
  • Tutorial on Using OPeNDAP to get data
  • Tutorial on Using Geo Data Portal to get data
  • MACA Mailing List


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy