A Multi-Strategy Collaborative Grey Wolf Optimization Algorithm for UAV Path Planning
Abstract
:1. Introduction
2. Grey Wolf Optimization Algorithm
2.1. Surrounding Prey
2.2. Attacking Prey
2.3. Questing Prey
3. A Multi-Strategy Collaborative Grey Wolf Optimization Algorithm
3.1. Nonlinear Convergence Factor Strategy
3.2. Opposition-Based Learning Model Strategy Influenced by Refraction Principle
3.3. Random Walk Strategy
3.4. Time Complexity Analysis
4. Experimental and Analysis
4.1. Test Functions and Parameter Settings
4.2. Comparison with GWO and Its Variants
4.3. Comparison with Other Outstanding Swarm Intelligence Algorithms
4.3.1. Convergence Analysis
4.3.2. Friedman Test
4.3.3. Engineering Application
5. Application of Path Planning for Unmanned Aerial Vehicles
5.1. Description of UAV Path Planning Constraints
5.1.1. Path Length Constraint
5.1.2. Threat Constraint
5.1.3. Height Constraint
5.1.4. Mobility Constraint
5.1.5. Total Cost Function
5.2. Simulation Experiments
5.2.1. Scenario Setup and Parameter Settings
5.2.2. Simulation Experiment Results and Analysis
6. Discussions
6.1. Experiment Outcomes
6.2. Engineering Problems Application
6.3. UAV Path Planning Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–55. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Yang, H.; Zhang, N.; Wang, L.; Shao, P. Agricultural UAV trajectory planning by incorporating multi-mechanism improved grey wolf optimization algorithm. Expert Syst. Appl. 2023, 233, 120946. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, C. Application of grey wolf optimization for solving combinatorial problems: Job shop and flexible job shop scheduling cases. IEEE Access 2018, 6, 26231–26240. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Rajakumar, R.; Sekaran, K.; Hsu, C.H.; Kadry, S. Accelerated grey wolf optimization for global optimization problems. Technol. Forecast. Soc. Chang. 2021, 169, 120824. [Google Scholar] [CrossRef]
- Banaie-Dezfouli, M.; Nadimi-Shahraki, M.H.; Beheshti, Z. R-GWO: Representative-based grey wolf optimizer for solving engineering problems. Appl. Soft Comput. 2021, 106, 107328. [Google Scholar] [CrossRef]
- Guha, D.; Roy, P.K.; Banerjee, S. Load frequency control of large scale power system using quasi-oppositional grey wolf optimization algorithm. Eng. Sci. Technol. Int. J. 2016, 19, 1693–1713. [Google Scholar] [CrossRef]
- Yang, J.C.; Long, W. Improved grey wolf optimization algorithm for constrained mechanical design problems. Appl. Mech. Mater. 2016, 851, 553–558. [Google Scholar] [CrossRef]
- Ou, Y.; Yin, P.; Mo, L. An improved grey wolf optimizer and its application in robot path planning. Biomimetics 2023, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar]
- Shao, P.; Yang, L.; Tan, L.; Li, G.; Peng, H. Enhancing artificial bee colony algorithm using refraction principle. Soft Comput. 2020, 24, 15291–15306. [Google Scholar] [CrossRef]
- Han, L.; He, X. A novel opposition-based particle swarm optimization for noisy problems. In Proceedings of the 3rd International Conference on Natural Computation, Haikou, China, 24–27 August 2007; pp. 624–629. [Google Scholar]
- Shao, P.; Wu, Z.J.; Zhou, X.Y.; Deng, C.S. Improved particle swarm optimization algorithm based on opposite learning of refraction. Acta Electron. Sin. 2015, 43, 2137–2144. [Google Scholar]
- Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastián, Spain, 5–8 June 2017; pp. 372–379. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft Comput. 2021, 107, 107376. [Google Scholar]
- Wang, B.H.; Wang, D.B.; Ali, Z.A.; Ting Ting, B.; Wang, H. An overview of various kinds of wind effects on unmanned aerial vehicle. Meas. Control. 2019, 52, 731–739. [Google Scholar] [CrossRef]
- Phadke, A.; Medrano, F.A.; Chu, T.; Sekharan, C.N.; Starek, M.J. Modeling Wind and Obstacle Disturbances for Effective Performance Observations and Analysis of Resilience in UAV Swarms. Aerospace 2024, 11, 237. [Google Scholar] [CrossRef]
Function | Algorithm | Mean | Std | Max | Min |
---|---|---|---|---|---|
F1 | GWO | 2.74 × 109 | 2.03 × 109 | 9.05 × 109 | 2.17 × 108 |
OGWO | 2.84 × 109 | 1.73 × 109 | 7.46 × 109 | 1.83 × 108 | |
newOGWO | 2.71 × 109 | 1.71 × 109 | 6.98 × 109 | 1.89 × 108 | |
NOGWO | 3.67 × 109 | 2.24 × 109 | 1.05 × 1010 | 9.13 × 108 | |
F2 | GWO | 7.78 × 1032 | 2.42 × 1033 | 1.21 × 1034 | 1.87 × 1019 |
OGWO | 4.52 × 1033 | 2.50 × 1034 | 1.39 × 1035 | 6.39 × 1018 | |
newOGWO | 1.25 × 1032 | 6.24 × 1032 | 3.48 × 1033 | 6.81 × 1018 | |
NOGWO | 4.53 × 1031 | 1.96 × 1032 | 1.08 × 1033 | 2.12 × 1020 | |
F3 | GWO | 6.31 × 104 | 9.66 × 103 | 8.57 × 104 | 3.71 × 104 |
OGWO | 5.74 × 104 | 6.91 × 103 | 6.99 × 104 | 4.16 × 104 | |
newOGWO | 5.24 × 104 | 8.56 × 103 | 6.75 × 104 | 3.24 × 104 | |
NOGWO | 4.54 × 104 | 9.29 × 103 | 6.06 × 104 | 2.58 × 104 | |
F4 | GWO | 6.52 × 102 | 1.60 × 102 | 1.44 × 103 | 5.02 × 102 |
OGWO | 6.65 × 102 | 1.15 × 102 | 9.54 × 102 | 5.22 × 102 | |
newOGWO | 6.52 × 102 | 1.36 × 102 | 1.12 × 103 | 5.09 × 102 | |
NOGWO | 6.44 × 102 | 9.60 × 101 | 9.51 × 102 | 5.35 × 102 | |
F5 | GWO | 6.26 × 102 | 4.30 × 101 | 7.33 × 102 | 5.63 × 102 |
OGWO | 6.24 × 102 | 3.78 × 101 | 7.30 × 102 | 5.71 × 102 | |
newOGWO | 6.29 × 102 | 3.87 × 101 | 7.44 × 102 | 5.72 × 102 | |
NOGWO | 6.51 × 102 | 4.86 × 101 | 7.72 × 102 | 5.89 × 102 | |
F6 | GWO | 6.14 × 102 | 6.13 × 100 | 6.29 × 102 | 6.06 × 102 |
OGWO | 6.12 × 102 | 4.24 × 100 | 6.21 × 102 | 6.04 × 102 | |
newOGWO | 6.13 × 102 | 4.51 × 100 | 6.25 × 102 | 6.04 × 102 | |
NOGWO | 6.12 × 102 | 5.58 × 100 | 6.27 × 102 | 6.04 × 102 | |
F7 | GWO | 9.15 × 102 | 6.10 × 101 | 1.06 × 103 | 8.30 × 102 |
OGWO | 8.99 × 102 | 4.01 × 101 | 1.00 × 103 | 8.44 × 102 | |
newOGWO | 8.99 × 102 | 4.50 × 101 | 1.00 × 103 | 8.25 × 102 | |
NOGWO | 9.36 × 102 | 5.75 × 101 | 1.06 × 103 | 8.44 × 102 | |
F8 | GWO | 9.11 × 102 | 3.05 × 101 | 1.02 × 103 | 8.81 × 102 |
OGWO | 9.07 × 102 | 3.23 × 101 | 1.03 × 103 | 8.69 × 102 | |
newOGWO | 9.07 × 102 | 3.04 × 101 | 1.04 × 103 | 8.68 × 102 | |
NOGWO | 9.41 × 102 | 5.21 × 101 | 1.06 × 103 | 8.91 × 102 | |
F9 | GWO | 2.95 × 103 | 1.40 × 103 | 6.85 × 103 | 1.44 × 103 |
OGWO | 2.20 × 103 | 7.00 × 102 | 4.58 × 103 | 1.37 × 103 | |
newOGWO | 2.63 × 103 | 1.19 × 103 | 7.31 × 103 | 9.88 × 102 | |
NOGWO | 2.83 × 103 | 9.26 × 102 | 5.09 × 103 | 1.36 × 103 | |
F10 | GWO | 5.17 × 103 | 1.56 × 103 | 9.29 × 103 | 3.26 × 103 |
OGWO | 6.45 × 103 | 1.82 × 103 | 8.96 × 103 | 3.93 × 103 | |
newOGWO | 6.44 × 103 | 2.00 × 103 | 9.01 × 103 | 3.45 × 103 | |
NOGWO | 7.58 × 103 | 1.58 × 103 | 9.15 × 103 | 4.23 × 103 | |
F11 | GWO | 2.63 × 103 | 1.26 × 103 | 4.89 × 103 | 1.33 × 103 |
OGWO | 2.41 × 103 | 1.11 × 103 | 5.18 × 103 | 1.38 × 103 | |
newOGWO | 2.16 × 103 | 8.58 × 102 | 4.35 × 103 | 1.29 × 103 | |
NOGWO | 1.42 × 103 | 9.19 × 101 | 1.60 × 103 | 1.29 × 103 | |
F12 | GWO | 1.73 × 108 | 3.45 × 108 | 1.85 × 109 | 1.33 × 107 |
OGWO | 1.04 × 108 | 9.05 × 107 | 3.30 × 108 | 1.04 × 107 | |
newOGWO | 9.99 × 107 | 7.59 × 107 | 2.83 × 108 | 3.95 × 106 | |
NOGWO | 1.18 × 108 | 1.31 × 108 | 5.75 × 108 | 7.17 × 106 | |
F13 | GWO | 1.76 × 107 | 3.80 × 107 | 1.20 × 108 | 5.58 × 104 |
OGWO | 7.88 × 106 | 2.11 × 107 | 9.60 × 107 | 4.84 × 104 | |
newOGWO | 4.04 × 107 | 1.00 × 108 | 3.47 × 108 | 7.06 × 104 | |
NOGWO | 8.67 × 106 | 2.34 × 107 | 9.46 × 107 | 2.36 × 104 | |
F14 | GWO | 6.63 × 105 | 7.02 × 105 | 2.15 × 106 | 4.76 × 103 |
OGWO | 7.28 × 105 | 7.54 × 105 | 2.71 × 106 | 5.56 × 103 | |
newOGWO | 5.73 × 105 | 5.11 × 105 | 1.79 × 106 | 3.11 × 103 | |
NOGWO | 2.49 × 105 | 2.97 × 105 | 9.62 × 105 | 3.79 × 103 | |
F15 | GWO | 1.98 × 106 | 6.19 × 106 | 3.39 × 107 | 1.90 × 104 |
OGWO | 8.82 × 105 | 1.49 × 106 | 5.28 × 106 | 3.50 × 104 | |
newOGWO | 8.38 × 105 | 1.36 × 106 | 4.57 × 106 | 1.27 × 104 | |
NOGWO | 8.32 × 105 | 1.30 × 106 | 5.67 × 106 | 2.64 × 104 | |
F16 | GWO | 2.69 × 103 | 3.95 × 102 | 3.67 × 103 | 1.85 × 103 |
OGWO | 2.60 × 103 | 2.37 × 102 | 3.09 × 103 | 2.16 × 103 | |
newOGWO | 2.65 × 103 | 4.25 × 102 | 3.36 × 103 | 1.90 × 103 | |
NOGWO | 2.78 × 103 | 4.10 × 102 | 3.84 × 103 | 2.24 × 103 | |
F17 | GWO | 2.04 × 103 | 1.64 × 102 | 2.40 × 103 | 1.82 × 103 |
OGWO | 2.11 × 103 | 1.98 × 102 | 2.50 × 103 | 1.81 × 103 | |
newOGWO | 2.03 × 103 | 1.66 × 102 | 2.38 × 103 | 1.80 × 103 | |
NOGWO | 2.02 × 103 | 1.41 × 102 | 2.36 × 103 | 1.79 × 103 | |
F18 | GWO | 4.68 × 106 | 1.29 × 107 | 7.29 × 107 | 1.81 × 105 |
OGWO | 1.91 × 106 | 1.95 × 106 | 7.27 × 106 | 1.29 × 105 | |
newOGWO | 1.85 × 106 | 3.16 × 106 | 1.81 × 107 | 3.22 × 104 | |
NOGWO | 9.51 × 105 | 1.24 × 106 | 6.08 × 106 | 4.69 × 104 | |
F19 | GWO | 2.08 × 106 | 6.65 × 106 | 3.74 × 107 | 1.64 × 104 |
OGWO | 2.00 × 106 | 6.99 × 106 | 3.95 × 107 | 8.14 × 103 | |
newOGWO | 1.99 × 106 | 6.09 × 106 | 3.42 × 107 | 2.54 × 104 | |
NOGWO | 1.45 × 106 | 2.43 × 106 | 1.33 × 107 | 7.01 × 103 | |
F20 | GWO | 2.52 × 103 | 1.86 × 102 | 2.90 × 103 | 2.18 × 103 |
OGWO | 2.60 × 103 | 2.34 × 102 | 3.12 × 103 | 2.23 × 103 | |
newOGWO | 2.48 × 103 | 2.31 × 102 | 2.98 × 103 | 2.20 × 103 | |
NOGWO | 2.43 × 103 | 1.58 × 102 | 2.89 × 103 | 2.21 × 103 | |
F21 | GWO | 2.42 × 103 | 4.02 × 101 | 2.54 × 103 | 2.37 × 103 |
OGWO | 2.41 × 103 | 4.69 × 101 | 2.56 × 103 | 2.35 × 103 | |
newOGWO | 2.41 × 103 | 3.24 × 101 | 2.52 × 103 | 2.35 × 103 | |
NOGWO | 2.44 × 103 | 4.90 × 101 | 2.54 × 103 | 2.37 × 103 | |
F22 | GWO | 5.72 × 103 | 2.28 × 103 | 1.02 × 104 | 2.51 × 103 |
OGWO | 3.09 × 103 | 1.32 × 103 | 9.61 × 103 | 2.39 × 103 | |
newOGWO | 2.98 × 103 | 5.07 × 102 | 4.89 × 103 | 2.44 × 103 | |
NOGWO | 2.97 × 103 | 8.19 × 102 | 7.08 × 103 | 2.45 × 103 | |
F23 | GWO | 2.79 × 103 | 5.37 × 101 | 2.92 × 103 | 2.73 × 103 |
OGWO | 2.81 × 103 | 5.84 × 101 | 2.92 × 103 | 2.73 × 103 | |
newOGWO | 2.79 × 103 | 5.35 × 101 | 2.92 × 103 | 2.71 × 103 | |
NOGWO | 2.78 × 103 | 5.85 × 101 | 2.98 × 103 | 2.73 × 103 | |
F24 | GWO | 2.98 × 103 | 6.95 × 101 | 3.14 × 103 | 2.89 × 103 |
OGWO | 2.97 × 103 | 7.29 × 101 | 3.12 × 103 | 2.88 × 103 | |
newOGWO | 2.96 × 103 | 6.97 × 101 | 3.13 × 103 | 2.86 × 103 | |
NOGWO | 2.98 × 103 | 6.57 × 101 | 3.10 × 103 | 2.88 × 103 | |
F25 | GWO | 3.03 × 103 | 4.22 × 101 | 3.12 × 103 | 2.95 × 103 |
OGWO | 3.02 × 103 | 6.58 × 101 | 3.28 × 103 | 2.93 × 103 | |
newOGWO | 3.04 × 103 | 1.05 × 102 | 3.40 × 103 | 2.93 × 103 | |
NOGWO | 3.02 × 103 | 4.38 × 101 | 3.10 × 103 | 2.93 × 103 | |
F26 | GWO | 5.07 × 103 | 4.22 × 102 | 5.93 × 103 | 4.46 × 103 |
OGWO | 5.03 × 103 | 4.47 × 102 | 6.59 × 103 | 4.32 × 103 | |
newOGWO | 4.92 × 103 | 3.90 × 102 | 5.79 × 103 | 4.33 × 103 | |
NOGWO | 4.88 × 103 | 6.00 × 102 | 6.04 × 103 | 3.65 × 103 | |
F27 | GWO | 3.27 × 103 | 3.82 × 101 | 3.44 × 103 | 3.23 × 103 |
OGWO | 3.27 × 103 | 3.22 × 101 | 3.35 × 103 | 3.23 × 103 | |
newOGWO | 3.27 × 103 | 2.72 × 101 | 3.33 × 103 | 3.23 × 103 | |
NOGWO | 3.26 × 103 | 3.01 × 101 | 3.36 × 103 | 3.21 × 103 | |
F28 | GWO | 3.48 × 103 | 1.03 × 102 | 3.79 × 103 | 3.30 × 103 |
OGWO | 3.48 × 103 | 1.53 × 102 | 4.18 × 103 | 3.36 × 103 | |
newOGWO | 3.47 × 103 | 9.95 × 101 | 3.71 × 103 | 3.29 × 103 | |
NOGWO | 3.46 × 103 | 1.35 × 102 | 4.08 × 103 | 3.30 × 103 | |
F29 | GWO | 3.97 × 103 | 1.90 × 102 | 4.41 × 103 | 3.56 × 103 |
OGWO | 3.95 × 103 | 2.22 × 102 | 4.52 × 103 | 3.56 × 103 | |
newOGWO | 3.91 × 103 | 2.01 × 102 | 4.37 × 103 | 3.58 × 103 | |
NOGWO | 3.86 × 103 | 2.73 × 102 | 4.77 × 103 | 3.50 × 103 | |
F30 | GWO | 1.16 × 107 | 7.80 × 106 | 2.81 × 107 | 5.77 × 105 |
OGWO | 1.18 × 107 | 7.40 × 106 | 2.92 × 107 | 8.60 × 105 | |
newOGWO | 1.39 × 107 | 1.21 × 107 | 5.36 × 107 | 7.73 × 105 | |
NOGWO | 1.01 × 107 | 8.11 × 106 | 2.81 × 107 | 6.93 × 105 | |
Data analysis results | 19/30 | 10/30 | 13/30 | 11/30 |
Function | Algorithm | Mean | Std | Max | Min |
---|---|---|---|---|---|
F1 | GWO | 1.19 × 1010 | 4.29 × 109 | 2.06 × 1010 | 4.29 × 109 |
OGWO | 1.09 × 1010 | 4.75 × 109 | 1.94 × 1010 | 1.93 × 109 | |
newOGWO | 1.04 × 1010 | 3.84 × 109 | 1.76 × 1010 | 2.77 × 109 | |
NOGWO | 1.54 × 1010 | 5.50 × 109 | 2.81 × 1010 | 7.04 × 109 | |
F2 | GWO | 4.74 × 1055 | 2.63 × 1056 | 1.46 × 1057 | 9.55 × 1044 |
OGWO | 2.58 × 1055 | 1.44 × 1056 | 8.00 × 1056 | 1.02 × 1043 | |
newOGWO | 5.98 × 1059 | 3.33 × 1060 | 1.86 × 1061 | 2.56 × 1045 | |
NOGWO | 5.62 × 1053 | 3.08 × 1054 | 1.72 × 1055 | 3.34 × 1042 | |
F3 | GWO | 1.68 × 105 | 3.11 × 104 | 2.38 × 105 | 1.17 × 105 |
OGWO | 1.41 × 105 | 1.50 × 104 | 1.70 × 105 | 1.12 × 105 | |
newOGWO | 1.47 × 105 | 2.16 × 104 | 1.92 × 105 | 1.11 × 105 | |
NOGWO | 1.26 × 105 | 1.65 × 104 | 1.58 × 105 | 9.81 × 104 | |
F4 | GWO | 1.61 × 103 | 5.93 × 102 | 2.97 × 103 | 7.39 × 102 |
OGWO | 1.55 × 103 | 6.17 × 102 | 2.97 × 103 | 7.96 × 102 | |
newOGWO | 1.55 × 103 | 7.41 × 102 | 3.62 × 103 | 8.07 × 102 | |
NOGWO | 1.92 × 103 | 8.62 × 102 | 4.04 × 103 | 7.38 × 102 | |
F5 | GWO | 7.56 × 102 | 7.32 × 101 | 9.97 × 102 | 6.70 × 102 |
OGWO | 7.54 × 102 | 3.54 × 101 | 8.30 × 102 | 6.69 × 102 | |
newOGWO | 7.43 × 102 | 3.36 × 101 | 8.02 × 102 | 6.53 × 102 | |
NOGWO | 8.57 × 102 | 7.28 × 101 | 1.05 × 103 | 7.14 × 102 | |
F6 | GWO | 6.26 × 102 | 3.82 × 100 | 6.33 × 102 | 6.17 × 102 |
OGWO | 6.26 × 102 | 6.62 × 100 | 6.39 × 102 | 6.12 × 102 | |
newOGWO | 6.25 × 102 | 4.74 × 100 | 6.34 × 102 | 6.16 × 102 | |
NOGWO | 6.30 × 102 | 7.76 × 100 | 6.48 × 102 | 6.19 × 102 | |
F7 | GWO | 1.16 × 103 | 9.44 × 101 | 1.42 × 103 | 1.02 × 103 |
OGWO | 1.15 × 103 | 7.77 × 101 | 1.31 × 103 | 1.00 × 103 | |
newOGWO | 1.18 × 103 | 9.21 × 101 | 1.37 × 103 | 1.02 × 103 | |
NOGWO | 1.21 × 103 | 8.13 × 101 | 1.38 × 103 | 1.03 × 103 | |
F8 | GWO | 1.06 × 103 | 3.51 × 101 | 1.14 × 103 | 9.96 × 102 |
OGWO | 1.04 × 103 | 4.13 × 101 | 1.11 × 103 | 9.72 × 102 | |
newOGWO | 1.06 × 103 | 4.88 × 101 | 1.23 × 103 | 9.94 × 102 | |
NOGWO | 1.11 × 103 | 7.56 × 101 | 1.30 × 103 | 9.76 × 102 | |
F9 | GWO | 1.17 × 104 | 4.60 × 103 | 2.45 × 104 | 5.24 × 103 |
OGWO | 1.08 × 104 | 4.68 × 103 | 2.37 × 104 | 5.19 × 103 | |
newOGWO | 1.18 × 104 | 4.49 × 103 | 2.03 × 104 | 5.79 × 103 | |
NOGWO | 1.69 × 104 | 5.48 × 103 | 2.92 × 104 | 5.82 × 103 | |
F10 | GWO | 9.03 × 103 | 2.43 × 103 | 1.55 × 104 | 6.59 × 103 |
OGWO | 1.12 × 104 | 2.98 × 103 | 1.55 × 104 | 6.98 × 103 | |
newOGWO | 1.13 × 104 | 3.08 × 103 | 1.55 × 104 | 5.93 × 103 | |
NOGWO | 1.25 × 104 | 3.37 × 103 | 1.57 × 104 | 6.64 × 103 | |
F11 | GWO | 7.28 × 103 | 2.99 × 103 | 1.47 × 104 | 3.24 × 103 |
OGWO | 6.11 × 103 | 2.65 × 103 | 1.25 × 104 | 2.13 × 103 | |
newOGWO | 6.07 × 103 | 1.95 × 103 | 1.03 × 104 | 1.87 × 103 | |
NOGWO | 2.35 × 103 | 4.08 × 102 | 3.36 × 103 | 1.74 × 103 | |
F12 | GWO | 1.51 × 109 | 1.65 × 109 | 6.75 × 109 | 7.67 × 107 |
OGWO | 1.32 × 109 | 1.40 × 109 | 6.62 × 109 | 6.80 × 107 | |
newOGWO | 1.42 × 109 | 1.58 × 109 | 6.39 × 109 | 6.62 × 107 | |
NOGWO | 1.72 × 109 | 1.60 × 109 | 7.88 × 109 | 1.90 × 108 | |
F13 | GWO | 2.17 × 108 | 1.83 × 108 | 8.25 × 108 | 8.29 × 106 |
OGWO | 2.04 × 108 | 1.67 × 108 | 7.66 × 108 | 5.68 × 106 | |
newOGWO | 4.74 × 108 | 1.35 × 109 | 7.67 × 109 | 3.42 × 106 | |
NOGWO | 2.56 × 108 | 2.99 × 108 | 1.28 × 109 | 8.53 × 105 | |
F14 | GWO | 2.86 × 106 | 3.89 × 106 | 1.92 × 107 | 7.65 × 104 |
OGWO | 1.63 × 106 | 1.61 × 106 | 6.86 × 106 | 1.23 × 105 | |
newOGWO | 1.67 × 106 | 2.08 × 106 | 1.00 × 107 | 1.42 × 105 | |
NOGWO | 8.94 × 105 | 9.41 × 105 | 4.93 × 106 | 9.51 × 104 | |
F15 | GWO | 6.64 × 107 | 1.63 × 108 | 7.13 × 108 | 4.23 × 104 |
OGWO | 2.29 × 107 | 3.48 × 107 | 1.15 × 108 | 4.54 × 104 | |
newOGWO | 5.86 × 107 | 1.27 × 108 | 6.25 × 108 | 5.22 × 104 | |
NOGWO | 1.54 × 107 | 2.11 × 107 | 7.06 × 107 | 3.12 × 104 | |
F16 | GWO | 3.37 × 103 | 4.00 × 102 | 4.06 × 103 | 2.74 × 103 |
OGWO | 3.37 × 103 | 4.50 × 102 | 4.54 × 103 | 2.58 × 103 | |
newOGWO | 3.42 × 103 | 4.50 × 102 | 4.78 × 103 | 2.76 × 103 | |
NOGWO | 3.73 × 103 | 7.50 × 102 | 5.60 × 103 | 2.47 × 103 | |
F17 | GWO | 3.09 × 103 | 2.40 × 102 | 3.89 × 103 | 2.79 × 103 |
OGWO | 3.06 × 103 | 3.01 × 102 | 3.79 × 103 | 2.48 × 103 | |
newOGWO | 3.30 × 103 | 5.08 × 102 | 4.57 × 103 | 2.55 × 103 | |
NOGWO | 3.23 × 103 | 4.96 × 102 | 4.38 × 103 | 2.53 × 103 | |
F18 | GWO | 1.54 × 107 | 2.00 × 107 | 6.96 × 107 | 7.51 × 105 |
OGWO | 9.56 × 106 | 1.09 × 107 | 4.93 × 107 | 1.31 × 106 | |
newOGWO | 1.29 × 107 | 1.60 × 107 | 6.40 × 107 | 7.65 × 105 | |
NOGWO | 6.13 × 106 | 9.00 × 106 | 4.27 × 107 | 1.04 × 106 | |
F19 | GWO | 1.26 × 107 | 2.99 × 107 | 1.33 × 108 | 2.04 × 105 |
OGWO | 9.25 × 106 | 2.30 × 107 | 1.24 × 108 | 1.32 × 105 | |
newOGWO | 9.46 × 106 | 2.00 × 107 | 8.91 × 107 | 8.11 × 104 | |
NOGWO | 7.47 × 106 | 1.36 × 107 | 6.48 × 107 | 2.34 × 105 | |
F20 | GWO | 3.11 × 103 | 3.50 × 102 | 4.17 × 103 | 2.47 × 103 |
OGWO | 3.48 × 103 | 5.48 × 102 | 4.37 × 103 | 2.55 × 103 | |
newOGWO | 3.33 × 103 | 5.06 × 102 | 4.25 × 103 | 2.48 × 103 | |
NOGWO | 3.45 × 103 | 5.87 × 102 | 4.27 × 103 | 2.56 × 103 | |
F21 | GWO | 2.57 × 103 | 7.73 × 101 | 2.86 × 103 | 2.46 × 103 |
OGWO | 2.56 × 103 | 4.53 × 101 | 2.74 × 103 | 2.50 × 103 | |
newOGWO | 2.56 × 103 | 5.71 × 101 | 2.80 × 103 | 2.49 × 103 | |
NOGWO | 2.59 × 103 | 8.65 × 101 | 2.85 × 103 | 2.49 × 103 | |
F22 | GWO | 1.05 × 104 | 2.63 × 103 | 1.76 × 104 | 8.33 × 103 |
OGWO | 1.21 × 104 | 2.93 × 103 | 1.72 × 104 | 4.78 × 103 | |
newOGWO | 1.27 × 104 | 3.13 × 103 | 1.73 × 104 | 8.75 × 103 | |
NOGWO | 1.03 × 104 | 4.68 × 103 | 1.68 × 104 | 2.98 × 103 | |
F23 | GWO | 3.04 × 103 | 7.87 × 101 | 3.30 × 103 | 2.91 × 103 |
OGWO | 3.06 × 103 | 7.86 × 101 | 3.28 × 103 | 2.94 × 103 | |
newOGWO | 3.06 × 103 | 9.78 × 101 | 3.34 × 103 | 2.94 × 103 | |
NOGWO | 3.03 × 103 | 6.82 × 101 | 3.29 × 103 | 2.91 × 103 | |
F24 | GWO | 3.24 × 103 | 1.03 × 102 | 3.50 × 103 | 3.10 × 103 |
OGWO | 3.25 × 103 | 9.89 × 101 | 3.49 × 103 | 3.12 × 103 | |
newOGWO | 3.22 × 103 | 1.09 × 102 | 3.52 × 103 | 3.11 × 103 | |
NOGWO | 3.22 × 103 | 1.21 × 102 | 3.48 × 103 | 3.05 × 103 | |
F25 | GWO | 4.11 × 103 | 5.96 × 102 | 5.28 × 103 | 3.33 × 103 |
OGWO | 3.86 × 103 | 3.67 × 102 | 4.95 × 103 | 3.39 × 103 | |
newOGWO | 3.92 × 103 | 4.39 × 102 | 5.60 × 103 | 3.40 × 103 | |
NOGWO | 4.09 × 103 | 4.27 × 102 | 5.31 × 103 | 3.49 × 103 | |
F26 | GWO | 7.18 × 103 | 7.18 × 102 | 9.27 × 103 | 6.03 × 103 |
OGWO | 7.27 × 103 | 6.09 × 102 | 8.67 × 103 | 6.02 × 103 | |
newOGWO | 7.19 × 103 | 6.95 × 102 | 8.93 × 103 | 6.17 × 103 | |
NOGWO | 6.89 × 103 | 8.29 × 102 | 9.05 × 103 | 5.47 × 103 | |
F27 | GWO | 3.70 × 103 | 1.09 × 102 | 3.96 × 103 | 3.47 × 103 |
OGWO | 3.73 × 103 | 1.16 × 102 | 4.01 × 103 | 3.52 × 103 | |
newOGWO | 3.71 × 103 | 1.20 × 102 | 4.01 × 103 | 3.50 × 103 | |
NOGWO | 3.69 × 103 | 9.97 × 101 | 3.95 × 103 | 3.52 × 103 | |
F28 | GWO | 4.68 × 103 | 6.92 × 102 | 6.74 × 103 | 3.69 × 103 |
OGWO | 4.72 × 103 | 4.63 × 102 | 5.52 × 103 | 3.79 × 103 | |
newOGWO | 4.74 × 103 | 4.68 × 102 | 5.87 × 103 | 3.71 × 103 | |
NOGWO | 4.65 × 103 | 3.53 × 102 | 5.36 × 103 | 4.10 × 103 | |
F29 | GWO | 5.08 × 103 | 4.98 × 102 | 6.29 × 103 | 4.34 × 103 |
OGWO | 4.94 × 103 | 3.37 × 102 | 5.59 × 103 | 4.14 × 103 | |
newOGWO | 5.11 × 103 | 4.21 × 102 | 5.99 × 103 | 4.43 × 103 | |
NOGWO | 4.86 × 103 | 3.55 × 102 | 5.75 × 103 | 4.22 × 103 | |
F30 | GWO | 1.84 × 108 | 1.11 × 108 | 6.56 × 108 | 5.95 × 107 |
OGWO | 1.62 × 108 | 6.01 × 107 | 3.11 × 108 | 7.06 × 107 | |
newOGWO | 1.62 × 108 | 3.82 × 107 | 2.48 × 108 | 8.84 × 107 | |
NOGWO | 2.01 × 108 | 5.95 × 107 | 3.41 × 108 | 1.17 × 108 | |
Data analysis results | 14/30 | 9/30 | 11/30 | 10/30 |
Function | Algorithm | Mean | Std | Max | Min |
---|---|---|---|---|---|
F1 | NOGWO | 3.17 × 109 | 2.12 × 109 | 8.56 × 109 | 1.25 × 108 |
GWO | 2.91 × 109 | 2.02 × 109 | 7.91 × 109 | 4.40 × 108 | |
DE | 1.08 × 106 | 6.06 × 105 | 2.67 × 106 | 5.09 × 104 | |
WOA | 1.79 × 109 | 1.31 × 109 | 4.90 × 109 | 3.53 × 107 | |
ALO | 3.72 × 104 | 7.50 × 104 | 4.28 × 105 | 1.33 × 103 | |
SCA | 2.18 × 1010 | 4.06 × 109 | 3.18 × 1010 | 1.26 × 1010 | |
F2 | NOGWO | 2.78 × 1032 | 1.04 × 1033 | 5.46 × 1033 | 2.14 × 1021 |
GWO | 1.94 × 1034 | 1.05 × 1035 | 5.85 × 1035 | 3.24 × 1019 | |
DE | 1.41 × 1032 | 2.65 × 1032 | 1.03 × 1033 | 7.91 × 1027 | |
WOA | 5.18 × 1030 | 2.77 × 1031 | 1.55 × 1032 | 2.10 × 1017 | |
ALO | 8.34 × 1021 | 4.51 × 1022 | 2.51 × 1023 | 1.90 × 1013 | |
SCA | 2.32 × 1038 | 9.02 × 1038 | 4.93 × 1039 | 3.25 × 1033 | |
F3 | NOGWO | 4.45 × 104 | 7.54 × 103 | 5.82 × 104 | 2.78 × 104 |
GWO | 6.35 × 104 | 1.20 × 104 | 8.64 × 104 | 3.48 × 104 | |
DE | 1.62 × 105 | 2.76 × 104 | 2.23 × 105 | 1.06 × 105 | |
WOA | 1.01 × 105 | 3.18 × 104 | 1.70 × 105 | 4.94 × 104 | |
ALO | 2.21 × 105 | 4.69 × 104 | 2.96 × 105 | 1.27 × 105 | |
SCA | 8.51 × 104 | 1.66 × 104 | 1.41 × 105 | 5.71 × 104 | |
F4 | NOGWO | 6.25 × 102 | 5.40 × 101 | 7.36 × 102 | 5.20 × 102 |
GWO | 6.70 × 102 | 1.17 × 102 | 1.13 × 103 | 5.56 × 102 | |
DE | 5.20 × 102 | 1.92 × 101 | 5.54 × 102 | 4.98 × 102 | |
WOA | 6.28 × 102 | 9.41 × 101 | 9.79 × 102 | 5.18 × 102 | |
ALO | 5.42 × 102 | 3.17 × 101 | 6.12 × 102 | 4.79 × 102 | |
SCA | 3.10 × 103 | 8.73 × 102 | 5.28 × 103 | 1.92 × 103 | |
F5 | NOGWO | 6.69 × 102 | 4.55 × 101 | 7.96 × 102 | 5.94 × 102 |
GWO | 6.11 × 102 | 2.15 × 101 | 6.43 × 102 | 5.72 × 102 | |
DE | 6.99 × 102 | 1.29 × 101 | 7.30 × 102 | 6.64 × 102 | |
WOA | 7.32 × 102 | 5.03 × 101 | 8.52 × 102 | 6.41 × 102 | |
ALO | 6.76 × 102 | 5.32 × 101 | 7.86 × 102 | 5.89 × 102 | |
SCA | 8.28 × 102 | 2.82 × 101 | 8.84 × 102 | 7.78 × 102 | |
F6 | NOGWO | 6.14 × 102 | 6.10 × 100 | 6.31 × 102 | 6.05 × 102 |
GWO | 6.12 × 102 | 4.07 × 100 | 6.23 × 102 | 6.05 × 102 | |
DE | 6.00 × 102 | 4.08 × 10−2 | 6.00 × 102 | 6.00 × 102 | |
WOA | 6.50 × 102 | 1.13 × 101 | 6.72 × 102 | 6.32 × 102 | |
ALO | 6.49 × 102 | 1.03 × 101 | 6.67 × 102 | 6.23 × 102 | |
SCA | 6.63 × 102 | 7.15 × 100 | 6.82 × 102 | 6.50 × 102 | |
F7 | NOGWO | 9.21 × 102 | 5.80 × 101 | 1.06 × 103 | 8.45 × 102 |
GWO | 9.08 × 102 | 5.61 × 101 | 1.10 × 103 | 8.33 × 102 | |
DE | 9.30 × 102 | 1.20 × 101 | 9.48 × 102 | 9.02 × 102 | |
WOA | 1.02 × 103 | 6.24 × 101 | 1.17 × 103 | 9.39 × 102 | |
ALO | 1.14 × 103 | 8.60 × 101 | 1.32 × 103 | 9.66 × 102 | |
SCA | 1.26 × 103 | 7.05 × 101 | 1.44 × 103 | 1.16 × 103 | |
F8 | NOGWO | 9.16 × 102 | 3.30 × 101 | 1.06 × 103 | 8.68 × 102 |
GWO | 9.07 × 102 | 3.94 × 101 | 1.04 × 103 | 8.53 × 102 | |
DE | 9.94 × 102 | 1.28 × 101 | 1.02 × 103 | 9.59 × 102 | |
WOA | 1.00 × 103 | 4.38 × 101 | 1.10 × 103 | 9.22 × 102 | |
ALO | 9.46 × 102 | 3.90 × 101 | 1.09 × 103 | 8.93 × 102 | |
SCA | 1.10 × 103 | 2.65 × 101 | 1.15 × 103 | 1.03 × 103 | |
F9 | NOGWO | 2.96 × 103 | 1.25 × 103 | 6.56 × 103 | 1.22 × 103 |
GWO | 2.91 × 103 | 1.08 × 103 | 5.88 × 103 | 1.37 × 103 | |
DE | 2.01 × 103 | 4.17 × 102 | 2.91 × 103 | 1.30 × 103 | |
WOA | 6.39 × 103 | 2.51 × 103 | 1.24 × 104 | 2.82 × 103 | |
ALO | 5.05 × 103 | 1.36 × 103 | 8.56 × 103 | 2.80 × 103 | |
SCA | 8.53 × 103 | 1.85 × 103 | 1.15 × 104 | 4.98 × 103 | |
F10 | NOGWO | 7.78 × 103 | 1.73 × 103 | 9.21 × 103 | 4.06 × 103 |
GWO | 5.46 × 103 | 1.77 × 103 | 9.44 × 103 | 3.30 × 103 | |
DE | 7.67 × 103 | 3.42 × 102 | 8.24 × 103 | 6.61 × 103 | |
WOA | 5.98 × 103 | 6.89 × 102 | 7.11 × 103 | 4.11 × 103 | |
ALO | 5.62 × 103 | 8.67 × 102 | 7.33 × 103 | 3.81 × 103 | |
SCA | 8.78 × 103 | 3.45 × 102 | 9.34 × 103 | 8.10 × 103 | |
F11 | NOGWO | 1.43 × 103 | 1.19 × 102 | 1.75 × 103 | 1.27 × 103 |
GWO | 2.72 × 103 | 1.32 × 103 | 7.03 × 103 | 1.35 × 103 | |
DE | 1.95 × 103 | 4.88 × 102 | 3.55 × 103 | 1.38 × 103 | |
WOA | 1.88 × 103 | 8.22 × 102 | 4.44 × 103 | 1.35 × 103 | |
ALO | 1.58 × 103 | 2.22 × 102 | 2.30 × 103 | 1.34 × 103 | |
SCA | 4.00 × 103 | 1.03 × 103 | 6.84 × 103 | 2.53 × 103 | |
F12 | NOGWO | 1.04 × 108 | 9.24 × 107 | 4.36 × 108 | 4.49 × 106 |
GWO | 2.16 × 108 | 5.53 × 108 | 3.12 × 109 | 1.04 × 107 | |
DE | 3.09 × 107 | 1.54 × 107 | 8.32 × 107 | 1.06 × 107 | |
WOA | 6.16 × 107 | 5.16 × 107 | 2.20 × 108 | 1.91 × 106 | |
ALO | 2.94 × 107 | 2.47 × 107 | 9.26 × 107 | 2.24 × 106 | |
SCA | 2.62 × 109 | 6.81 × 108 | 4.32 × 109 | 1.31 × 109 | |
F13 | NOGWO | 1.10 × 107 | 3.86 × 107 | 2.06 × 108 | 2.00 × 104 |
GWO | 2.09 × 107 | 5.83 × 107 | 2.97 × 108 | 8.74 × 104 | |
DE | 4.32 × 106 | 4.34 × 106 | 2.16 × 107 | 4.48 × 105 | |
WOA | 2.19 × 105 | 1.58 × 105 | 7.17 × 105 | 3.23 × 104 | |
ALO | 1.24 × 105 | 8.28 × 104 | 4.63 × 105 | 2.35 × 104 | |
SCA | 1.23 × 109 | 8.59 × 108 | 4.96 × 109 | 3.56 × 108 | |
F14 | NOGWO | 4.11 × 105 | 6.05 × 105 | 2.58 × 106 | 9.83 × 103 |
GWO | 8.97 × 105 | 1.14 × 106 | 4.26 × 106 | 7.37 × 103 | |
DE | 4.52 × 105 | 2.49 × 105 | 1.20 × 106 | 1.54 × 105 | |
WOA | 5.47 × 105 | 6.13 × 105 | 2.62 × 106 | 3.68 × 103 | |
ALO | 4.88 × 105 | 4.81 × 105 | 1.86 × 106 | 1.91 × 104 | |
SCA | 9.54 × 105 | 7.96 × 105 | 3.95 × 106 | 1.85 × 105 | |
F15 | NOGWO | 6.95 × 105 | 1.43 × 106 | 5.88 × 106 | 1.48 × 104 |
GWO | 1.09 × 106 | 1.71 × 106 | 6.17 × 106 | 5.14 × 103 | |
DE | 9.32 × 105 | 6.59 × 105 | 3.21 × 106 | 1.68 × 105 | |
WOA | 1.00 × 105 | 1.51 × 105 | 8.29 × 105 | 1.67 × 104 | |
ALO | 4.62 × 104 | 3.03 × 104 | 1.48 × 105 | 5.80 × 103 | |
SCA | 5.46 × 107 | 5.94 × 107 | 2.08 × 108 | 2.46 × 106 | |
F16 | NOGWO | 2.92 × 103 | 4.76 × 102 | 3.96 × 103 | 2.23 × 103 |
GWO | 2.64 × 103 | 3.37 × 102 | 3.34 × 103 | 2.10 × 103 | |
DE | 3.02 × 103 | 1.73 × 102 | 3.45 × 103 | 2.64 × 103 | |
WOA | 3.08 × 103 | 4.47 × 102 | 4.39 × 103 | 2.27 × 103 | |
ALO | 3.27 × 103 | 3.11 × 102 | 3.98 × 103 | 2.48 × 103 | |
SCA | 4.10 × 103 | 2.67 × 102 | 4.68 × 103 | 3.40 × 103 | |
F17 | NOGWO | 2.07 × 103 | 1.90 × 102 | 2.64 × 103 | 1.80 × 103 |
GWO | 2.10 × 103 | 2.08 × 102 | 2.51 × 103 | 1.84 × 103 | |
DE | 2.25 × 103 | 1.07 × 102 | 2.44 × 103 | 2.00 × 103 | |
WOA | 2.47 × 103 | 2.55 × 102 | 2.85 × 103 | 1.93 × 103 | |
ALO | 2.57 × 103 | 2.30 × 102 | 3.15 × 103 | 2.10 × 103 | |
SCA | 2.77 × 103 | 2.13 × 102 | 3.23 × 103 | 2.33 × 103 | |
F18 | NOGWO | 1.03 × 106 | 1.04 × 106 | 4.39 × 106 | 7.88 × 104 |
GWO | 1.20 × 106 | 1.42 × 106 | 5.19 × 106 | 8.46 × 104 | |
DE | 3.54 × 106 | 1.74 × 106 | 6.94 × 106 | 5.47 × 105 | |
WOA | 3.30 × 106 | 3.48 × 106 | 1.48 × 107 | 1.40 × 105 | |
ALO | 1.42 × 106 | 1.38 × 106 | 5.19 × 106 | 1.31 × 105 | |
SCA | 1.30 × 107 | 8.97 × 106 | 4.57 × 107 | 2.82 × 106 | |
F19 | NOGWO | 1.27 × 106 | 2.19 × 106 | 1.11 × 107 | 9.90 × 103 |
GWO | 9.89 × 105 | 1.18 × 106 | 5.14 × 106 | 9.02 × 103 | |
DE | 5.89 × 105 | 5.26 × 105 | 2.51 × 106 | 1.71 × 105 | |
WOA | 4.47 × 105 | 9.22 × 105 | 4.33 × 106 | 6.52 × 103 | |
ALO | 4.22 × 106 | 2.67 × 106 | 1.02 × 107 | 2.14 × 104 | |
SCA | 1.16 × 108 | 6.48 × 107 | 2.98 × 108 | 3.51 × 107 | |
F20 | NOGWO | 2.43 × 103 | 2.10 × 102 | 2.92 × 103 | 2.23 × 103 |
GWO | 2.50 × 103 | 2.09 × 102 | 3.06 × 103 | 2.16 × 103 | |
DE | 2.52 × 103 | 1.04 × 102 | 2.76 × 103 | 2.26 × 103 | |
WOA | 2.71 × 103 | 2.15 × 102 | 3.07 × 103 | 2.34 × 103 | |
ALO | 2.74 × 103 | 2.20 × 102 | 3.24 × 103 | 2.36 × 103 | |
SCA | 2.96 × 103 | 1.29 × 102 | 3.21 × 103 | 2.69 × 103 | |
F21 | NOGWO | 2.40 × 103 | 4.52 × 101 | 2.52 × 103 | 2.25 × 103 |
GWO | 2.41 × 103 | 2.91 × 101 | 2.48 × 103 | 2.37 × 103 | |
DE | 2.50 × 103 | 1.47 × 101 | 2.52 × 103 | 2.46 × 103 | |
WOA | 2.50 × 103 | 3.92 × 101 | 2.58 × 103 | 2.42 × 103 | |
ALO | 2.44 × 103 | 2.96 × 101 | 2.53 × 103 | 2.39 × 103 | |
SCA | 2.60 × 103 | 2.10 × 101 | 2.65 × 103 | 2.54 × 103 | |
F22 | NOGWO | 2.79 × 103 | 2.89 × 102 | 3.85 × 103 | 2.46 × 103 |
GWO | 5.63 × 103 | 2.18 × 103 | 1.06 × 104 | 2.65 × 103 | |
DE | 5.98 × 103 | 1.98 × 103 | 9.83 × 103 | 3.70 × 103 | |
WOA | 6.91 × 103 | 1.62 × 103 | 8.65 × 103 | 2.56 × 103 | |
ALO | 5.27 × 103 | 2.43 × 103 | 9.04 × 103 | 2.31 × 103 | |
SCA | 1.00 × 104 | 1.20 × 103 | 1.07 × 104 | 4.86 × 103 | |
F23 | NOGWO | 2.81 × 103 | 6.66 × 101 | 2.92 × 103 | 2.72 × 103 |
GWO | 2.81 × 103 | 6.46 × 101 | 3.01 × 103 | 2.72 × 103 | |
DE | 2.84 × 103 | 1.68 × 101 | 2.86 × 103 | 2.79 × 103 | |
WOA | 2.89 × 103 | 4.61 × 101 | 2.99 × 103 | 2.81 × 103 | |
ALO | 2.86 × 103 | 5.62 × 101 | 2.98 × 103 | 2.73 × 103 | |
SCA | 3.10 × 103 | 5.12 × 101 | 3.22 × 103 | 2.98 × 103 | |
F24 | NOGWO | 2.96 × 103 | 6.18 × 101 | 3.08 × 103 | 2.88 × 103 |
GWO | 2.94 × 103 | 3.64 × 101 | 3.05 × 103 | 2.89 × 103 | |
DE | 3.04 × 103 | 1.45 × 101 | 3.06 × 103 | 3.01 × 103 | |
WOA | 3.02 × 103 | 6.31 × 101 | 3.24 × 103 | 2.94 × 103 | |
ALO | 3.01 × 103 | 4.27 × 101 | 3.08 × 103 | 2.93 × 103 | |
SCA | 3.26 × 103 | 4.30 × 101 | 3.34 × 103 | 3.16 × 103 | |
F25 | NOGWO | 3.03 × 103 | 6.45 × 101 | 3.24 × 103 | 2.93 × 103 |
GWO | 3.04 × 103 | 8.52 × 101 | 3.29 × 103 | 2.95 × 103 | |
DE | 2.90 × 103 | 9.85 × 100 | 2.94 × 103 | 2.89 × 103 | |
WOA | 3.02 × 103 | 4.23 × 101 | 3.13 × 103 | 2.93 × 103 | |
ALO | 2.97 × 103 | 3.34 × 101 | 3.07 × 103 | 2.92 × 103 | |
SCA | 3.65 × 103 | 2.82 × 102 | 4.58 × 103 | 3.34 × 103 | |
F26 | NOGWO | 4.86 × 103 | 6.08 × 102 | 6.19 × 103 | 3.60 × 103 |
GWO | 4.94 × 103 | 6.39 × 102 | 6.41 × 103 | 3.43 × 103 | |
DE | 5.56 × 103 | 1.07 × 102 | 5.81 × 103 | 5.32 × 103 | |
WOA | 5.69 × 103 | 9.53 × 102 | 7.39 × 103 | 3.55 × 103 | |
ALO | 5.87 × 103 | 8.93 × 102 | 7.16 × 103 | 2.80 × 103 | |
SCA | 7.84 × 103 | 4.43 × 102 | 8.56 × 103 | 6.63 × 103 | |
F27 | NOGWO | 3.26 × 103 | 4.05 × 101 | 3.41 × 103 | 3.22 × 103 |
GWO | 3.27 × 103 | 2.92 × 101 | 3.36 × 103 | 3.23 × 103 | |
DE | 3.23 × 103 | 6.70 × 100 | 3.24 × 103 | 3.22 × 103 | |
WOA | 3.29 × 103 | 3.77 × 101 | 3.38 × 103 | 3.24 × 103 | |
ALO | 3.42 × 103 | 9.11 × 101 | 3.73 × 103 | 3.25 × 103 | |
SCA | 3.53 × 103 | 6.78 × 101 | 3.71 × 103 | 3.40 × 103 | |
F28 | NOGWO | 3.45 × 103 | 6.13 × 101 | 3.64 × 103 | 3.33 × 103 |
GWO | 3.46 × 103 | 7.57 × 101 | 3.61 × 103 | 3.33 × 103 | |
DE | 3.30 × 103 | 2.31 × 101 | 3.35 × 103 | 3.27 × 103 | |
WOA | 3.45 × 103 | 7.60 × 101 | 3.64 × 103 | 3.34 × 103 | |
ALO | 3.36 × 103 | 5.62 × 101 | 3.52 × 103 | 3.25 × 103 | |
SCA | 4.43 × 103 | 4.14 × 102 | 5.67 × 103 | 3.68 × 103 | |
F29 | NOGWO | 3.92 × 103 | 2.29 × 102 | 4.54 × 103 | 3.56 × 103 |
GWO | 4.01 × 103 | 2.27 × 102 | 4.61 × 103 | 3.61 × 103 | |
DE | 4.16 × 103 | 1.23 × 102 | 4.50 × 103 | 3.91 × 103 | |
WOA | 4.49 × 103 | 3.85 × 102 | 5.50 × 103 | 3.74 × 103 | |
ALO | 4.72 × 103 | 4.11 × 102 | 5.65 × 103 | 4.14 × 103 | |
SCA | 5.18 × 103 | 3.79 × 102 | 5.86 × 103 | 4.44 × 103 | |
F30 | NOGWO | 1.31 × 107 | 1.34 × 107 | 5.61 × 107 | 8.25 × 105 |
GWO | 1.40 × 107 | 1.27 × 107 | 5.50 × 107 | 6.21 × 105 | |
DE | 4.53 × 105 | 3.15 × 105 | 1.37 × 106 | 1.07 × 105 | |
WOA | 4.24 × 106 | 2.91 × 106 | 1.04 × 107 | 4.27 × 105 | |
ALO | 6.87 × 106 | 4.96 × 106 | 2.48 × 107 | 1.03 × 106 | |
SCA | 1.97 × 108 | 7.07 × 107 | 3.80 × 108 | 9.68 × 107 |
Algorithm | Mean | Std | Max | Min |
---|---|---|---|---|
NOGWO | 10/1/19 | 4/0/26 | 4/0/26 | 12/0/18 |
GWO | 6/1/23 | 0/0/30 | 4/0/26 | 7/0/23 |
DE | 7/0/23 | 24/0/6 | 18/0/12 | 3/0/27 |
WOA | 1/0/29 | 0/0/30 | 1/0/29 | 3/0/27 |
ALO | 5/0/25 | 2/0/28 | 3/0/27 | 5/0/25 |
SCA | 0/0/30 | 0/0/30 | 0/0/30 | 0/0/30 |
Algorithm | The Mean of Ranks |
---|---|
NOGWO | 2.40 |
GWO | 2.97 |
DE | 2.83 |
WOA | 3.70 |
ALO | 3.20 |
SCA | 5.90 |
Algorithm | Optimal Cost | ||||
---|---|---|---|---|---|
NOGWO | 0.2055 | 3.2398 | 9.0365 | 0.2057 | 1.69320 |
GWO | 0.2042 | 3.2687 | 9.0347 | 0.2059 | 1.69615 |
DE | 0.2093 | 2.9788 | 9.5114 | 0.2127 | 1.79684 |
WOA | 0.2041 | 3.2696 | 9.0366 | 0.2057 | 1.69513 |
ALO | 0.1342 | 5.8565 | 9.0367 | 0.2057 | 1.89244 |
SCA | 0.1645 | 4.0262 | 10.0000 | 0.2036 | 1.88628 |
Algorithm | Optimal Cost | ||||
---|---|---|---|---|---|
NOGWO | 0.798244 | 0.395343 | 41.348645 | 186.193959 | 5925.2240 |
GWO | 1.012374 | 0.501105 | 52.437737 | 80.189589 | 6426.0690 |
DE | 0.813236 | 0.402309 | 42.067616 | 177.376991 | 5966.1910 |
WOA | 1.107443 | 0.547525 | 57.378749 | 48.797571 | 6720.8183 |
ALO | 1.064398 | 0.526132 | 55.149986 | 62.099404 | 6576.6354 |
SCA | 1.183176 | 0.539466 | 53.482687 | 74.356738 | 7487.3155 |
Algorithm | Optimal Cost | |||
---|---|---|---|---|
NOGWO | 0.051955 | 0.363144 | 10.923999 | 0.0126688 |
GWO | 0.050000 | 0.317296 | 14.047554 | 0.0127296 |
DE | 0.056979 | 0.497766 | 6.151031 | 0.0131727 |
WOA | 0.054967 | 0.440819 | 7.649949 | 0.0128525 |
ALO | 0.055722 | 0.461732 | 7.030393 | 0.0129465 |
SCA | 0.050000 | 0.314130 | 14.559287 | 0.0130044 |
Scenario | Algorithm | Mean | Std | Max | Min |
---|---|---|---|---|---|
1 | NOGWO | 4656.67 | 1.55 | 4659.23 | 4655.22 |
GWO | 4658.20 | 1.71 | 4661.01 | 4656.00 | |
SCA | 5685.49 | 502.34 | 6356.14 | 4786.08 | |
WOA | 8391.67 | 642.41 | 9779.49 | 7526.52 | |
2 | NOGWO | 4658.64 | 1.94 | 4661.23 | 4656.01 |
GWO | 4757.21 | 176.37 | 5090.76 | 4657.26 | |
SCA | 5408.48 | 388.92 | 6229.09 | 4926.61 | |
WOA | 9002.88 | 809.73 | 10,646.21 | 7778.30 | |
3 | NOGWO | 5152.31 | 622.67 | 6151.81 | 4688.59 |
GWO | 7451.77 | 2390.37 | 11,001.30 | 4705.14 | |
SCA | 8165.97 | 1122.61 | 9209.77 | 5608.55 | |
WOA | 9739.69 | 932.96 | 11,202.52 | 8128.42 | |
4 | NOGWO | 4942.72 | 321.24 | 5617.18 | 4721.42 |
GWO | 6931.27 | 2296.35 | 10,911.31 | 4707.30 | |
SCA | 8164.69 | 1192.57 | 9934.99 | 6427.13 | |
WOA | 10,186.34 | 938.96 | 11,755.63 | 9043.92 |
Scenario | Algorithm | Mean | Std | Max | Min |
---|---|---|---|---|---|
1 | NOGWO | 4714.33 | 139.28 | 5108.24 | 4659.16 |
GWO | 4836.80 | 289.53 | 5392.45 | 4658.77 | |
SCA | 8631.36 | 1523.72 | 11,221.17 | 7010.30 | |
WOA | 11,934.01 | 1486.04 | 14,383.97 | 10,434.10 | |
2 | NOGWO | 4773.09 | 225.59 | 5209.51 | 4657.75 |
GWO | 4824.12 | 256.22 | 5217.18 | 4659.03 | |
SCA | 10,278.69 | 1250.53 | 11,898.81 | 7840.16 | |
WOA | 12,369.43 | 1337.45 | 14,450.72 | 10,407.35 | |
3 | NOGWO | 5762.38 | 1011.61 | 6967.97 | 4714.00 |
GWO | 11,664.49 | 3335.20 | 14,650.18 | 5271.94 | |
SCA | 11,966.29 | 1187.49 | 13,537.90 | 9743.38 | |
WOA | 12,258.20 | 1219.40 | 14,635.69 | 9986.29 | |
4 | NOGWO | 6046.20 | 1417.89 | 9095.99 | 4714.91 |
GWO | 10,014.74 | 3523.07 | 14,066.93 | 5389.79 | |
SCA | 11,788.33 | 1323.21 | 13,121.40 | 9235.97 | |
WOA | 12,663.88 | 892.94 | 13,933.16 | 11,328.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, C.; Wang, Z.; Shao, P. A Multi-Strategy Collaborative Grey Wolf Optimization Algorithm for UAV Path Planning. Electronics 2024, 13, 2532. https://doi.org/10.3390/electronics13132532
Rao C, Wang Z, Shao P. A Multi-Strategy Collaborative Grey Wolf Optimization Algorithm for UAV Path Planning. Electronics. 2024; 13(13):2532. https://doi.org/10.3390/electronics13132532
Chicago/Turabian StyleRao, Chaoyi, Zilong Wang, and Peng Shao. 2024. "A Multi-Strategy Collaborative Grey Wolf Optimization Algorithm for UAV Path Planning" Electronics 13, no. 13: 2532. https://doi.org/10.3390/electronics13132532
APA StyleRao, C., Wang, Z., & Shao, P. (2024). A Multi-Strategy Collaborative Grey Wolf Optimization Algorithm for UAV Path Planning. Electronics, 13(13), 2532. https://doi.org/10.3390/electronics13132532