Saltu al enhavo

Grupa homomorfio

El Vikipedio, la libera enciklopedio

En grupa teorio, grupa homomorfio estas homomorfio inter grupoj, t.e. funkcio kiu konservas la algebran strukturon de grupoj (multipliko, inverso, neŭtrala elemento).

Se kaj estas grupoj, do grupa homomorfio de al estas funkcio plenumanta la jenan aksiomon:

  • Por ajnaj elementoj , do .

El tio sekvas, tia funkcio konservas ankaŭ la aliajn strukturojn de la grupo (inverson, neŭtralan elementon):

  • ; tial .
  • ; tial .

Ekzemploj

[redakti | redakti fonton]
  • La funkcio verigas . Ĝi do estas grupa homomorfio de al .
  • La funkcio estas grupa homomorfio de al .

Eksteraj ligiloj

[redakti | redakti fonton]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy