Aller au contenu

Bon nombre premier

Un article de Wikipédia, l'encyclopédie libre.

En arithmétique, un bon nombre premier est un nombre premier dont le carré est supérieur à chaque produit de deux nombres premiers, situés avant et après lui dans la suite des nombres premiers, et dont les indices sont équidistants du sien. Autrement dit : le n-ième nombre premier pn est « bon » si

pour tout 1 ≤ in − 1, pn2 > pn–i pn+i.

Exemple : les premiers nombres premiers sont 2, 3, 5, 7 et 11. En ce qui concerne p3 = 5, les deux conditions possibles

sont remplies, 5 est donc un bon premier.

Contre-exemple : en ce qui concerne p4 = 7, on a

donc 7 n'est donc pas un bon nombre premier.

John Selfridge a conjecturé et Carl Pomerance a démontré que l'ensemble des bons nombres premiers est infini[1]. Les dix premiers sont 5, 11, 17, 29, 37, 41, 53, 59, 67 et 71[2].

Notes et références

[modifier | modifier le code]
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Good prime » (voir la liste des auteurs).
  1. (en) C. Pomerance, « The prime number graph », Math. Comp., vol. 33, no 145,‎ , p. 399-408 (lire en ligne).
  2. Pour les 10 000 premiers, voir la suite A028388 de l'OEIS.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy