コンテンツにスキップ

良い素数

出典: フリー百科事典『ウィキペディア(Wikipedia)』

良い素数(よいそすう、: good prime)は、素数のうち、その平方数が素数列のなかで前後の等間隔の位置にあるもの2つの組のすべてより大きいものをいう。

良い素数を不等式であらわすと、1 ≤ in−1 であるすべての i に対して以下を満たす:

ここで pn はn番目の素数。

例 : 素数の最初の5つは2、3、5、7、11。条件をみると、

となるため、5は良い素数の条件を満たす。

良い素数は無限に存在する[1]。最初のいくつかの良い素数は以下の通り。

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149オンライン整数列大辞典の数列 A028388

脚注

[編集]
  1. ^ Weisstein, Eric W. "Good Prime". mathworld.wolfram.com (英語).
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy