ペラン数
ペラン数(英: Perrin number)とは、以下の漸化式で定義される数である。
また、これによって得られる以下の数列をペラン数列と呼ぶ。
n-頂点の閉路グラフにおける異なる極大独立集合の個数はn番目のペラン数となる [1]。
歴史
[編集]1878年にはエドゥアール・リュカが[2]、1899年にはラウル・ペランが[3]この数列について言及している。1982年にはAdamsとShanksがこの数列について詳しく調べ、ペラン数列と名付けた[4]。
母関数
[編集]ペラン数列の母関数は以下のようになる。
行列形式
[編集]Binetの公式
[編集]ペラン数は、以下の方程式の解の累乗を用いて表すことができる。
この方程式は3つの解を持ち、1つは実数解(p とする、プラスチック数と呼ばれる)、2つは複素共役な解(q, r とする)である。これらを用いて、フィボナッチ数列におけるBinetの公式と同様の公式を得ることができる。
複素解 q, r の絶対値は1より小さいので、 n を大きくすれば q^n, r^n は0に近づく。従って、十分大きな n に対しては、公式は以下のように簡略化できる。
この公式は、大きな n に対してペラン数を高速に計算するのに用いられる。ペラン数列の連続する項の比は p 、つまりプラスチック数に近づき、その値はおおよそ 1.324718 である。ペラン数列・パドヴァン数列におけるプラスチック数は、フィボナッチ数列における黄金比や、ペル数における白銀比に対応するものとなっている。
乗法公式
[編集]Binetの公式を用いて、 G(kn) を G(n−1), G(n) , G(n+1) で表すことができる。
であるが、これは の分解体上の係数を持つ3つの線型方程式であり、逆行列を求めることでを計算することができる。これらを k 乗し、和を求めればよい。
magmaでのコードの例を以下に示す。
P<x> := PolynomialRing(Rationals()); S<t> := SplittingField(x^3-x-1); P2<y> := PolynomialRing(S); p,q,r := Explode([r[1] : r in Roots(y^3-y-1)]); Mi:=Matrix([[1/p,1/q,1/r],[1,1,1],[p,q,r]])^(-1); T<u,v,w> := PolynomialRing(S,3); v1 := ChangeRing(Mi,T) *Matrix([[u],[v],[w]]); [p^i*v1[1,1]^3 + q^i*v1[2,1]^3 + r^i*v1[3,1]^3 : i in [-1..1]];
とすれば
となる。23という数字は定義多項式の判別式に由来する。
これを用いれば、整数演算によってn番目のペラン数を 回の乗算で求めることができる。
ペラン擬素数
[編集]P(n) が n で整除できる(割り切れる)ような n を列挙すると以下のようになる。
- n = 1, 2, 3, 5, 7, 11, 13, ...
1の後にはしばらく素数が続いている。全ての素数 p に対して、 P(p) が p で割り切れることが証明されている。しかし、その逆は成り立たない。すなわち、P(n) が n で割り切れるような合成数 n が存在する。このような n をペラン擬素数(Perrin pseudoprime)と呼ぶ。「ペラン擬素数は存在するか」という疑問はPerrin自身も考察しており、後にAdamsとShanksが最小のペラン擬素数 271441 = 5212 を発見し[4]肯定的に解決された。2番目に小さいペラン擬素数は 904631 = 7 x 13 x 9941 である。10億未満のペラン擬素数は17個存在する[5]。また、無限に多くのペラン擬素数が存在することがJon Granthamによって証明されている[6]。
ペラン素数
[編集]素数であるペラン数をペラン素数(Perrin prime)と呼ぶ(オンライン整数列大辞典の数列 A074788)。
- 2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797, 22584751787583336797527561822649328254745329
2006年5月にE. W. Weissteinが発見した32,147桁のペラン数 P(263226) はおそらくペラン素数であろうと考えられている。
注釈、参考文献
[編集]- ^ *Füredi, Z. (1987). “The number of maximal independent sets in connected graphs”. Journal of Graph Theory 11 (4): 463–470. doi:10.1002/jgt.3190110403.
- ^ *Lucas, E. (1878). “Théorie des fonctions numériques simplement périodiques”. American Journal of Mathematics 1: 197–240. doi:10.2307/2369311.
- ^ *Perrin, R. (1899). “Query 1484”. L'Intermediaire Des Mathematiciens 6: 76.
- ^ a b *Adams, William; Shanks, Daniel (1982). “Strong primality tests that are not sufficient”. Mathematics of Computation 39 (159): 255–300. doi:10.2307/2007637. MR0658231.
- ^ オンライン整数列大辞典の数列 A013998
- ^ There are infinitely many Perrin pseudoprimes, Jon Grantham, Journal of Number Theory (2010).