login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002451
Expansion of 1/((1-x)*(1-4*x)*(1-9*x)).
(Formerly M4945 N2118)
5
1, 14, 147, 1408, 13013, 118482, 1071799, 9668036, 87099705, 784246870, 7059619931, 63542171784, 571901915677, 5147206719578, 46325218390143, 416928397167052, 3752361301126529, 33771274616631006, 303941563175648035, 2735474435084708240, 24619271381777877861
OFFSET
0,2
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 35.
LINKS
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = 1/24 - 4^(n+2)/15 + 9^(n+2)/40. - Antonio Alberto Olivares, Feb 03 2010
a(n) = 13*a(n-1) - 36*a(n-2) + 1, n >= 2. - Vincenzo Librandi, Mar 23 2011
MAPLE
a:=n->sum((9^(n-j)-4^(n-j))/5, j=0..n): seq(a(n), n=1..30); # Zerinvary Lajos, Jan 15 2007
A002451:=-1/(z-1)/(4*z-1)/(9*z-1); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-4x)(1-9x)), {x, 0, 30}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
PROG
(PARI) Vec(1/((1-x)*(1-4*x)*(1-9*x))+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
(GAP) List([0..30], n->1/24-4^(n+2)/15+9^(n+2)/40); # Muniru A Asiru, Dec 18 2018
(Magma) [(10 - 4^(n+4) +6*9^(n+2))/240: n in [0..30]]; // G. C. Greubel, Jul 04 2019
(Sage) [(10 - 4^(n+4) +6*9^(n+2))/240 for n in (0..30)] # G. C. Greubel, Jul 04 2019
CROSSREFS
A diagonal of A036969.
Sequence in context: A209347 A132934 A027473 * A302994 A207259 A016170
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy