login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052903
Expansion of (1-x^3)/(1-2x-x^3+x^4).
1
1, 2, 4, 8, 17, 36, 76, 161, 341, 722, 1529, 3238, 6857, 14521, 30751, 65121, 137906, 292042, 618454, 1309693, 2773522, 5873456, 12438151, 26340131, 55780196, 118125087, 250152154, 529744373, 1121833637, 2375694341, 5030980901
OFFSET
0,2
COMMENTS
Partial sums of A052908. - R. J. Mathar, Nov 28 2011
FORMULA
G.f.: -(-1+x^3)/(1-2*x-x^3+x^4)
Recurrence: {a(0)=1, a(2)=4, a(1)=2, a(3)=8, a(n)-a(n+1)-2*a(n+3)+a(n+4)=0}
Sum(-1/643*(-222-40*_alpha-93*_alpha^2+54*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-_Z^3+_Z^4))
a(n) = A052908(n)-A052908(n-3), n>3. - R. J. Mathar, Apr 26 2017
MAPLE
spec := [S, {S=Sequence(Union(Z, Prod(Sequence(Prod(Z, Z, Z)), Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x^3)/(1-2x-x^3+x^4), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 0, 1, -1}, {1, 2, 4, 8}, 40] (* Harvey P. Dale, Jul 21 2021 *)
CROSSREFS
Sequence in context: A247297 A292322 A008999 * A308745 A367714 A226729
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy