login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052906
Expansion of (1-x^2)/(1-3*x-x^2).
7
1, 3, 9, 30, 99, 327, 1080, 3567, 11781, 38910, 128511, 424443, 1401840, 4629963, 15291729, 50505150, 166807179, 550926687, 1819587240, 6009688407, 19848652461, 65555645790, 216515589831, 715102415283, 2361822835680
OFFSET
0,2
COMMENTS
Image of 1/(1-3*x) under the mapping g(x) -> g(x/(1+x^2)). - Paul Barry, Jan 16 2005
a(n) is the number of compositions of n into odd parts with three kinds of each part. - John Tyler Rascoe, May 28 2024
FORMULA
G.f.: (1-x^2)/(1-3*x-x^2).
a(n)+3*a(n+1)-a(n+2)=0, with a(0)=1, a(1)=3, a(2)=9.
a(n) = Sum_{alpha=RootOf(-1+3*_Z+_Z^2)} (-3/13)*(3*alpha - 2)*alpha^(-1-n).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1, k)*3^(n-2*k). - Paul Barry, Jan 16 2005
If p(i)=3*(i mod 2) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p(j-i+1), (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise, then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010
G.f.: G(0)*(1-x^2)/(2-3*x), where G(k)= 1 + 1/(1 - (x*(13*k-9))/( x*(13*k+4) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) = 3*( ((3+sqrt(13))/2)^n - ((3-sqrt(13))/2)^n )/sqrt(13), for n>=1. - Bogart B. Strauss, Jul 19 2013
E.g.f.: 1 + 6*exp(3*x/2)*sinh(sqrt(13)*x/2)/sqrt(13). - Ilya Gutkovskiy, Nov 11 2016
a(n) = A006190(n+1) - A006190(n-1). - R. J. Mathar, Oct 06 2017
a(n) = 3*Fibonacci(n, 3) for n > 0, where Fibonacci(n, x) are the Fibonacci polynomials. - G. C. Greubel, Oct 14 2019
MAPLE
spec := [S, {S=Sequence(Prod(Union(Z, Z, Z), Sequence(Prod(Z, Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
# alternative:
f:= gfun:-rectoproc({a(0)=1, a(n)+3*a(n+1)-a(n+2)=0, a(1)=3, a(2)=9}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Nov 11 2016
MATHEMATICA
Table[If[n==0, 1, 3*Fibonacci[n, 3]], {n, 0, 30}] (* G. C. Greubel, Oct 14 2019 *)
PROG
(PARI) Vec((1-x^2)/(1-3*x-x^2) + O(x^40)) \\ Michel Marcus, Nov 11 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2)/(1-3*x-x^2) )); // G. C. Greubel, Oct 14 2019
(Sage)
def A052906_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x^2)/(1-3*x-x^2)).list()
A052906_list(30) # G. C. Greubel, Oct 14 2019
(GAP) a:=[3, 9];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Oct 14 2019
CROSSREFS
Cf. A003688 (partial sums).
Sequence in context: A250128 A199137 A089978 * A102898 A050181 A275690
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy