login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052905
a(n) = (n^2 + 7*n + 2)/2.
20
1, 5, 10, 16, 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, 166, 185, 205, 226, 248, 271, 295, 320, 346, 373, 401, 430, 460, 491, 523, 556, 590, 625, 661, 698, 736, 775, 815, 856, 898, 941, 985, 1030, 1076, 1123, 1171, 1220, 1270, 1321, 1373, 1426, 1480
OFFSET
0,2
COMMENTS
Starting 1, 5, 10, 16, 23, ... gives binomial transform of (1, 4, 1, 0, 0, 0, ...). Row sums of triangle A134199. - Gary W. Adamson, Jul 25 2007
If Y_i (i=1,2,3,4,5) are 2-blocks of an n-set X then, for n >= 10, a(n-4) is the number of (n-2)-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Nov 09 2007
This sequence is related to A159920 by A159920(n+1) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. - Bruno Berselli, Feb 28 2014
Numbers m > 0 such that 8m+41 is a square. - Bruce J. Nicholson, Jul 28 2017
LINKS
Charles Cratty, Samuel Erickson, Frehiwet Negass, and Lara Pudwell, Pattern Avoidance in Double Lists, Involve, Vol. 10, No. 3 (2017), pp. 379-398; preprint, 2015.
FORMULA
G.f.: (-2*x+2*x^2-1)/(-1+x)^3.
Recurrence: {a(0)=1, a(1)=5, a(2)=10, -2*a(n)+n^2+7*n+2}.
a(n) = n+a(n-1)+3, with n>0, a(0)=1. - Vincenzo Librandi, Aug 06 2010
E.g.f.: (1/2)*(x^2 + 8*x + 2)*exp(x). - G. C. Greubel, Jul 13 2017
Sum_{n>=0} 1/a(n) = 19/20 + 2*Pi*tan(sqrt(41)*Pi/2)/sqrt(41). - Amiram Eldar, Dec 13 2022
EXAMPLE
Illustration of initial terms:
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o . . . . . o
. o o o o o o o . . . . o o . . . . . o
. o o o o o . . . o o . . . . o o . . . . . o
. o o o . . o o . . . o o . . . . o o . . . . . o
. o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o o o o o o o o o o o o o o o o o o o o o o o o o o
----------------------------------------------------------------------
. 1 5 10 16 23 31 40
[Bruno Berselli, Feb 28 2014]
MAPLE
spec := [S, {S=Prod(Sequence(Z), Sequence(Z), Union(Sequence(Z), Z, Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(binomial(n, 2)-5, n=4..55); # Zerinvary Lajos, Jan 13 2007
a:=n->sum((n-4)/2, j=0..n): seq(a(n)-2, n=5..56); # Zerinvary Lajos, Apr 30 2007
with (combinat):seq((fibonacci(3, n)+n-11)/2, n=3..54); # Zerinvary Lajos, Jun 07 2008
a:=n->sum(k, k=0..n):seq(a(n)/2+sum(k, k=5..n)/2, n=3..54); # Zerinvary Lajos, Jun 10 2008
MATHEMATICA
i=4; s=1; lst={s}; Do[s+=n+i; If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *)
k = 3; NestList[(k++; # + k) &, 1, 45] (* Robert G. Wilson v, Feb 03 2011 *)
Table[(n^2 + 7n + 2)/2, {n, 0, 49}] (* Alonso del Arte, Feb 03 2011 *)
LinearRecurrence[{3, -3, 1}, {1, 5, 10}, 60] (* Harvey P. Dale, Sep 15 2018 *)
PROG
(PARI) a(n)=n*(n+7)/2+1 \\ Charles R Greathouse IV, Nov 20 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 08 2000
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy