login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A161707
a(n) = (4*n^3 - 9*n^2 + 11*n + 3)/3.
18
1, 3, 7, 21, 53, 111, 203, 337, 521, 763, 1071, 1453, 1917, 2471, 3123, 3881, 4753, 5747, 6871, 8133, 9541, 11103, 12827, 14721, 16793, 19051, 21503, 24157, 27021, 30103, 33411, 36953, 40737, 44771, 49063, 53621, 58453, 63567, 68971, 74673
OFFSET
0,2
COMMENTS
{a(k): 0 <= k < 4} = divisors of 21:
a(n) = A027750(A006218(20) + k + 1), 0 <= k < A000005(21).
FORMULA
a(n) = C(n,0) + 2*C(n,1) + 2*C(n,2) + 8*C(n,3).
G.f.: (7*x^3 + x^2 - x + 1)/(x-1)^4. - Harvey P. Dale, Mar 28 2011
E.g.f.: (1/3)*(4*x^3 + 3*x^2 + 6*x + 3)*exp(x). - G. C. Greubel, Jul 16 2017
EXAMPLE
Differences of divisors of 21 to compute the coefficients of their interpolating polynomial, see formula:
1 3 7 21
2 4 14
2 10
8
MAPLE
A161707:=n->(4*n^3 - 9*n^2 + 11*n + 3)/3: seq(A161707(n), n=0..100); # Wesley Ivan Hurt, Jan 19 2017
MATHEMATICA
Table[(4n^3-9n^2+11n+3)/3, {n, 0, 40}] (* or *)
CoefficientList[Series[(7x^3+x^2-x+1)/(x-1)^4, {x, 0, 60}], x] (* Harvey P. Dale, Mar 28 2011 *)
PROG
(Magma) [(4*n^3 - 9*n^2 + 11*n + 3)/3: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) a(n)=(4*n^3-9*n^2+11*n)/3+1 \\ Charles R Greathouse IV, Jul 16 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jun 17 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy