login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A261775
Expansion of Product_{k>=1} (1 - x^(8*k))/(1 - x^k).
15
1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 72, 94, 124, 161, 208, 266, 341, 431, 545, 684, 856, 1064, 1322, 1631, 2009, 2464, 3014, 3672, 4467, 5411, 6543, 7888, 9489, 11383, 13632, 16280, 19409, 23088, 27415, 32483, 38430, 45371, 53485, 62939, 73950, 86742
OFFSET
0,3
COMMENTS
Number of partitions in which no part occurs more than 7 times. - Ilya Gutkovskiy, May 31 2017
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 30
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.
FORMULA
a(n) ~ Pi*sqrt(7) * BesselI(1, sqrt(7*(24*n + 7)/8) * Pi/6) / (4*sqrt(24*n + 7)) ~ exp(Pi*sqrt(7*n/3)/2) * 7^(1/4) / (2^(7/2) * 3^(1/4) * n^(3/4)) * (1 + (7^(3/2)*Pi/(96*sqrt(3)) - 3*sqrt(3)/(4*Pi*sqrt(7))) / sqrt(n) + (343*Pi^2/55296 - 45/(224*Pi^2) - 35/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284341(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f.: A(x)*A(x^2)*A(x^4) where A(x) is the o.g.f. for A000009. (see Flajolet, Sedgewick link) - Geoffrey Critzer, Aug 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
signum(irem(d, 8)), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 07 2022
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(8*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 8], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
PROG
(PARI) Vec(prod(k=1, 51, (1 - x^(8*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.
Sequence in context: A333193 A035986 A035996 * A036007 A027342 A363231
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 31 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy