login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A261776
Expansion of Product_{k>=1} (1 - x^(10*k))/(1 - x^k).
16
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 98, 130, 169, 220, 282, 363, 460, 584, 735, 923, 1151, 1435, 1775, 2194, 2698, 3311, 4045, 4935, 5994, 7270, 8787, 10600, 12749, 15310, 18330, 21912, 26130, 31107, 36949, 43823, 51863, 61290, 72293, 85145, 100107
OFFSET
0,3
COMMENTS
General asymptotic formula (Hagis, 1971): If s > 1 and g.f. = Product_{k>=1} (1 - x^(s*k))/(1 - x^k), then a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), minor asymptotic terms added by Vaclav Kotesovec, Jan 13 2017
The formula in the article by Noureddine Chair: "The Euler-Riemann Gases, and Partition Identities", p. 32, is incorrect (must be s -> s-1 and 24 -> 24*n).
Number of partitions in which no part occurs more than 9 times. - Ilya Gutkovskiy, May 31 2017
LINKS
Noureddine Chair, The Euler-Riemann Gases, and Partition Identities, arXiv:1306.5415 [math-ph], 2013, p. 32.
Peter Hagis jr., Partitions with a restriction on the multiplicity of the summands, Transactions of the American Mathematical Society, Volume 155, Number 2, April 1971.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.
FORMULA
a(n) ~ 3*Pi * BesselI(1, sqrt((24*n + 9)/10) * Pi/2) / (5*sqrt(24*n + 9)) ~ exp(Pi*sqrt(3*n/5)) * 3^(1/4) / (4 * 5^(3/4) * n^(3/4)) * (1 + (3^(3/2)*Pi/(16*sqrt(5)) - sqrt(15)/(8*Pi)) / sqrt(n) + (27*Pi^2/2560 - 25/(128*Pi^2) - 45/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284344(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(10*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 10], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 29 2020 *)
PROG
(PARI) Vec(prod(k=1, 51, (1 - x^(10*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.
Sequence in context: A137792 A039905 A036009 * A027344 A184645 A053691
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 31 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy