跳转到内容

卡倫數

维基百科,自由的百科全书

卡倫數是形式如(寫作)的自然數

質數能被整除。根據費馬小定理,若p是質數,能整除對於 (對於)。

廣義卡倫數有時定義為而且胡道爾數有時稱為第二種卡倫數。

歷史和卡倫質數

[编辑]

1905年,詹姆士·卡倫首先研究它。

1958年Raphael M. Robinson核實是質數,且證明了若,除了之外,均為合成數

1984年Wilfrid Cellar又類似地核實了 和以上提到的卡倫質數之外,均為合成數。

截止2009年4月,已知的卡倫質數有141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828 (OEIS:A005849),n=1354000以下的卡倫質數已被找到。可是,「存在無限個卡倫質數」這問題仍屬猜想。

是否存在質數使得為質數同樣為疑問。

參考

[编辑]
  • Cullen, James (1905). Question 15897. Educ. Times (December 1905), 534.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy