跳转到内容

莱布尼茨三角形

本页使用了标题或全文手工转换
维基百科,自由的百科全书

莱布尼茨三角形是一種將分數等腰三角形排列的一種排列方式,三角形二側最外層的數字是其行編號的倒數,其中間的數字是其左側數字和左上方數字差的絕對值。若用代數方式表示:

L(r, 1) = 1/rr為行編號,最小編號為1)
L(r, c) = |L(r − 1, c − 1) − L(r, c − 1)|c為為列編號,不會大於r

莱布尼茨三角形是數學家戈特弗里德·莱布尼茨在1714年提出[1]。莱布尼茨三角形的前幾列為:

莱布尼茨三角形的分母列在(OEIS數列A003506)中,其分子均為1。

楊輝三角形中,每一項都是其左上方和右上方數字的和.而在莱布尼茨三角形中,每一項都是其左下方和右下方數字的和,例如在第五行中的1/30是第六行二個1/60的和。

楊輝三角形可以用二項式係數來計算,而莱布尼茨三角形也可以用二項式係數來計算:。而且可以用楊輝三角形中的項次來計算莱布尼茨三角形:「每一行的各項是第一項除以楊輝三角形中對應項次的結果」[2]

若將莱布尼茨三角形中第n行的所有分母相加,其結果會是。例如第3行的分母和為3 + 6 + 3 = 12 = 3 × 22

特別是的莱布尼茨三角形中的各項可以用以下的積分式表示:

相關條目

[编辑]

參考資料

[编辑]
  1. ^ Crilly, Tony. 50 Mathematical Ideas you really need to know. London: Quercus. 2007: 53. ISBN 978-1-84724-008-8. 
  2. ^ Wells, David (1986). The Penguin Dictionary of Curious and Interesting Numbers, p.98. ISBN 978-0-14-026149-3.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy