Skip to content
#

multi-agent-reinforcement-learning

Here are 354 public repositories matching this topic...

VectorizedMultiAgentSimulator

VMAS is a vectorized differentiable simulator designed for efficient Multi-Agent Reinforcement Learning benchmarking. It is comprised of a vectorized 2D physics engine written in PyTorch and a set of challenging multi-robot scenarios. Additional scenarios can be implemented through a simple and modular interface.

  • Updated Dec 22, 2024
  • Python
macad-gym

Multi-Agent Connected Autonomous Driving (MACAD) Gym environments for Deep RL. Code for the paper presented in the Machine Learning for Autonomous Driving Workshop at NeurIPS 2019:

  • Updated May 20, 2023
  • Python

The purpose of this repository is to make prototypes as case study in the context of proof of concept(PoC) and research and development(R&D) that I have written in my website. The main research topics are Auto-Encoders in relation to the representation learning, the statistical machine learning for energy-based models, adversarial generation net…

  • Updated Dec 26, 2023
  • Python

Improve this page

Add a description, image, and links to the multi-agent-reinforcement-learning topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the multi-agent-reinforcement-learning topic, visit your repo's landing page and select "manage topics."

Learn more

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy