TensorFlow函数:tf.metrics.mean_relative_error

2018-10-10 16:04 更新

tf.metrics.mean_relative_error函数

tf.metrics.mean_relative_error(
    labels,
    predictions,
    normalizer,
    weights=None,
    metrics_collections=None,
    updates_collections=None,
    name=None
)

定义在:tensorflow/python/ops/metrics_impl.py.

通过对给定值进行正态化计算平均相对误差.

该mean_relative_error函数创建两个局部变量,total和count,它们被用来计算的平均相对误差绝对值.该平均是通过weights加权,并最终被返回为mean_relative_error: 这是等幂操作,简单地使用count除total.

为了估计数据流上的度量,该函数创建一个update_op操作来更新这些变量并返回mean_reative_error.在内部,relative_errors操作将predictions和labels之间的差值的绝对值除以normalizer.然后update_op通过weights和relative_errors乘积的减少总和来递增total,并且它通过weights的减少总和来递增count.

如果weights是None,则权重默认为1,使用权重0来屏蔽值.

参数:

  • labels:与predictions具有相同形状的Tensor.
  • predictions:任意形状的Tensor.
  • normalizer:与predictions具有相同形状的Tensor.
  • weights:可选的Tensor,其秩为0或与labels具有相同秩,并且必须可广播到labels(即,所有维度必须为1或者与相应的labels维度相同).
  • metrics_collections:mean_relative_error应添加到的集合的可选列表.
  • updates_collections:update_op应添加到的集合的可选列表.
  • name:可选的variable_scope名称.

返回:

  • mean_relative_error:表示当前均值的Tensor,total除以count的值..
  • update_op:适当增加total和count变量,并且其值与mean_relative_error匹配的操作

可能引发的异常:

  • ValueError:如果predictions和labels有不匹配的形状,或者weights不是None,并且它的形状与predictions不匹配,或者如果metrics_collections或updates_collections中任意一个不是一个列表或元组.
  • RuntimeError:如果启用了急切执行.
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy