TensorFlow函数:tf.losses.softmax_cross_entropy

2018-09-11 15:23 更新

tf.losses.softmax_cross_entropy函数

tf.losses.softmax_cross_entropy(
    onehot_labels,
    logits,
    weights=1.0,
    label_smoothing=0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)

定义在:tensorflow/python/ops/losses/losses_impl.py.

使用tf.nn.softmax_cross_entropy_with_logits创建交叉熵(cross-entropy)loss.

weights作为loss的系数.如果提供了标量,那么loss只是按给定值缩放.如果weights是形状为[batch_size]的张量,则loss权重适用于每个相应的样本.

如果label_smoothing非零,则将标签平滑为:1/num_classes: new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes

参数:

  • onehot_labels:[batch_size, num_classes]目标是一个hot-encoded标签.
  • logits:[batch_size, num_classes]logits网络的输出.
  • weights:可选的Tensor,其秩为0或1,并且可以广播到形状为[batch_size]的Tensor的loss.
  • label_smoothing:如果大于0,则平滑标签.
  • scope:计算loss时执行的操作范围.
  • loss_collection:将添加loss的集合.
  • reduction:适用于loss的减少类型.

返回:

与logits具有相同类型的加权损失Tensor.如果reduction是NONE,这有形状[batch_size];否则,它是标量.

可能引发的异常:

  • ValueError:如果logits的形状与onehot_labels不匹配,或weights的形状无效,或者如果weights是None,如果onehot_labels或logits是None.
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy