TensorFlow模块:tf.nn

2020-09-10 10:07 更新

模块:tf.nn

定义在:tensorflow/tools/api/generator/api/nn/__init__.py.

Python API的导入.

这个文件是机器生成的!不要编辑.生成者:tensorflow/tools/api/generator/create_python_api.py脚本.

模块

Activation Functions(激活函数)

  • tf.nn.relu(features, name=None)    #max(features, 0)
  • tf.nn.relu6(features, name=None)    #min(max(features, 0), 6)
  • tf.nn.softplus(features, name=None)    #log(exp(features) + 1)
  • tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)   #计算dropout
  • tf.nn.bias_add(value, bias, name=None)   #加偏置
  • tf.sigmoid(x, name=None)   #  1/(1+exp(-x))
  • tf.tanh(x, name=None)  #双曲正切曲线   (exp(x)-exp(-x))/(exp(x)+exp(-x))

Convolution(卷积运算)

  • tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)   #4D input
  • tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None)   #5D input
  • tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None)   #执行一个深度卷积,分别作用于通道上,然后执行一个混合通道的点卷积

Pooling(池化)

  • tf.nn.avg_pool(value, ksize, strides, padding, name=None)   #平均值池化
  • tf.nn.max_pool(value, ksize, strides, padding, name=None)   #最大值池化
  • tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None)   #放回最大值和扁平索引

Normalization(标准化)

  • tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)   #L2范式标准化
  • tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None)   #计算局部数据标准化,每个元素被独立标准化
  • tf.nn.moments(x, axes, name=None)   #平均值和方差

Losses(损失)

  • tf.nn.l2_loss(t,name=None)  #sum(t^2)/2

Classification(分类)

  • tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None)  #交叉熵
  • tf.nn.softmax(logits, name=None)  #softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))
  • tf.nn.log_softmax(logits, name=None)  #logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))
  • tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)  #计算logits和labels的softmax交叉熵

RNN

  • tf.nn.rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None)  #基于RNNCell类的实例cell建立循环神经网络
  • tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None)  #基于RNNCell类的实例cell建立动态循环神经网络与一般rnn不同的是,该函数会根据输入动态展开返回(outputs,state)
  • tf.nn.state_saving_rnn(cell, inputs, state_saver, state_name, sequence_length=None, scope=None)  #可储存调试状态的RNN网络
  • tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs,initial_state_fw=None, initial_state_bw=None, dtype=None,sequence_length=None, scope=None)   #双向RNN, 返回一个3元组tuple (outputs, output_state_fw, output_state_bw)


以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy