TensorFlow函数:tf.image.extract_glimpse

2018-05-30 11:02 更新

tf.image.extract_glimpse函数

tf.image.extract_glimpse(
    input,
    size,
    offsets,
    centered=True,
    normalized=True,
    uniform_noise=True,
    name=None
)

请参阅指南:图像操作>裁剪

从输入张量中提取glimpse.

从输入张量的offsets位置处返回一组称为glimpses的窗口.如果窗口仅与输入部分重叠,则非重叠区域将填充随机噪声.

结果是一个四维张量的形状[batch_size, glimpse_height, glimpse_width, channels].通道和批处理维度与输入张量相同.输出窗口的高度和宽度在size参数中指定.

参数normalized和centered控制如何构建窗口:

  • 如果坐标归一化但不居中,则0.0和1.0对应于每个高度和宽度维度的最小值和最大值.
  • 如果坐标既标准化又居中,则它们的范围从-1.0到1.0.坐标(-1.0,-1.0)对应于左上角,右下角位于(1.0,1.0),中心位于(0,0).
  • 如果坐标未标准化,则将其解释为像素数.

参数:

  • input:float32类型的Tensor,形状为[batch_size, height, width, channels]的四维浮动张量.
  • size:int32类型的Tensor,2个元素的1维张量,其包含要提取的glimpses大小;必须先指定glimpses高度,然后是glimpses宽度.
  • offsets:float32类型的Tensor.形状为[batch_size, 2]的2维整数张量,其中包含每个窗口中心的 y、x 位置.
  • centered:可选的bool,默认为True,指示偏移坐标是否相对于图像居中,在这种情况下,(0,0)偏移是相对于输入图像的中心的;如果为false,则(0,0)偏移量对应于输入图像的左上角.
  • normalized:可选的bool,默认为True,指示偏移坐标是否归一化.
  • uniform_noise:可选的bool,默认为True,指示是否应该使用均匀分布或高斯分布生成噪声.
  • name:操作的名称(可选).

返回:

函数返回float32类型的Tensor.

以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy