TensorFlow绘制样本

2018-08-29 15:45 更新

tf.contrib.bayesflow.stochastic_tensor.SampleValue


tf.contrib.bayesflow.stochastic_tensor.SampleValue 类

定义在 tensorflow/contrib/bayesflow/python/ops/stochastic_tensor_impl.py.

参见指南:BayesFlow随机张量(contrib)>随机张量值类型

绘制样本,可能会添加新的外部维度.
此值在其上下文中运行的 StochasticTensors 中抽取样本, 并根据所请求的形状增加秩.

例子:

mu = tf.zeros((2 ,3 ))
sigma = tf.ones((2 , 3 ))
with sg.value_type(sg.SampleValue()):
st = sg.StochasticTensor(
tf.contrib.distributions.Normal,mu = mu,sigma = sigma)
#1个抽取样品,并且不重塑
assertEqual( st.value().get_shape(),(2 ,3))
mu = tf .zeros((2 ,3 ))
sigma = tf.ones((2 , 3 ))
with sg.value_type(sg.SampleValue(4 )):
st = sg.StochasticTensor (
tf.contrib.distributions.Normal,mu = mu,sigma = sigma)
#4个绘制样品各自与形状(2,3)并连接
assertEqual(st.value().get_shape(),(4 ,2 ,3))

属性


  • shape
  • stop_gradient

方法


__init__

__init__ (
shape = (),
stop_gradient = False
)

根据形状取样.
对于给定的 StochasticTensor st 使用此值类型,st. value () 的形状将与 st.distribution.sample (形状)匹配.

ARGS:

  • shape:形状元组或 int32 张量.样品形状,默认是一个标量:取一个样本,不要改变大小.
  • stop_gradient:如果是真的,StochasticTensors 的价值被包装在 stop_gradient, 以避免反向传播.

declare_inputs

declare_inputs (
unused_stochastic_tensor ,
unused_inputs_dict
)

popped_above

popped_above ( unused_value_type )

pushed_above

push_above ( unused_value_type )
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy