跳转至

117. 填充每个节点的下一个右侧节点指针 II

题目描述

给定一个二叉树:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL

初始状态下,所有 next 指针都被设置为 NULL

 

示例 1:

输入:root = [1,2,3,4,5,null,7]
输出:[1,#,2,3,#,4,5,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化输出按层序遍历顺序(由 next 指针连接),'#' 表示每层的末尾。

示例 2:

输入:root = []
输出:[]

 

提示:

  • 树中的节点数在范围 [0, 6000]
  • -100 <= Node.val <= 100

进阶:

  • 你只能使用常量级额外空间。
  • 使用递归解题也符合要求,本题中递归程序的隐式栈空间不计入额外空间复杂度。

解法

方法一:BFS

我们使用队列 \(q\) 进行层序遍历,每次遍历一层时,将当前层的节点按顺序连接起来。

时间复杂度 \(O(n)\),空间复杂度 \(O(n)\)。其中 \(n\) 为二叉树的节点个数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
"""
# Definition for a Node.
class Node:
    def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
        self.val = val
        self.left = left
        self.right = right
        self.next = next
"""


class Solution:
    def connect(self, root: "Node") -> "Node":
        if root is None:
            return root
        q = deque([root])
        while q:
            p = None
            for _ in range(len(q)):
                node = q.popleft()
                if p:
                    p.next = node
                p = node
                if node.left:
                    q.append(node.left)
                if node.right:
                    q.append(node.right)
        return root
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    public Node connect(Node root) {
        if (root == null) {
            return root;
        }
        Deque<Node> q = new ArrayDeque<>();
        q.offer(root);
        while (!q.isEmpty()) {
            Node p = null;
            for (int n = q.size(); n > 0; --n) {
                Node node = q.poll();
                if (p != null) {
                    p.next = node;
                }
                p = node;
                if (node.left != null) {
                    q.offer(node.left);
                }
                if (node.right != null) {
                    q.offer(node.right);
                }
            }
        }
        return root;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
*/

class Solution {
public:
    Node* connect(Node* root) {
        if (!root) {
            return root;
        }
        queue<Node*> q{{root}};
        while (!q.empty()) {
            Node* p = nullptr;
            for (int n = q.size(); n; --n) {
                Node* node = q.front();
                q.pop();
                if (p) {
                    p->next = node;
                }
                p = node;
                if (node->left) {
                    q.push(node->left);
                }
                if (node->right) {
                    q.push(node->right);
                }
            }
        }
        return root;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Left *Node
 *     Right *Node
 *     Next *Node
 * }
 */

func connect(root *Node) *Node {
    if root == nil {
        return root
    }
    q := []*Node{root}
    for len(q) > 0 {
        var p *Node
        for n := len(q); n > 0; n-- {
            node := q[0]
            q = q[1:]
            if p != nil {
                p.Next = node
            }
            p = node
            if node.Left != nil {
                q = append(q, node.Left)
            }
            if node.Right != nil {
                q = append(q, node.Right)
            }
        }
    }
    return root
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
 * Definition for Node.
 * class Node {
 *     val: number
 *     left: Node | null
 *     right: Node | null
 *     next: Node | null
 *     constructor(val?: number, left?: Node, right?: Node, next?: Node) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

function connect(root: Node | null): Node | null {
    if (!root) {
        return null;
    }
    const q: Node[] = [root];
    while (q.length) {
        const nq: Node[] = [];
        let p: Node | null = null;
        for (const node of q) {
            if (p) {
                p.next = node;
            }
            p = node;
            const { left, right } = node;
            left && nq.push(left);
            right && nq.push(right);
        }
        q.splice(0, q.length, ...nq);
    }
    return root;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/*
// Definition for a Node.
public class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
}
*/

public class Solution {
    public Node Connect(Node root) {
        if (root == null) {
            return null;
        }
        var q = new Queue<Node>();
        q.Enqueue(root);
        while (q.Count > 0) {
            Node p = null;
            for (int i = q.Count; i > 0; --i) {
                var node = q.Dequeue();
                if (p != null) {
                    p.next = node;
                }
                p = node;
                if (node.left != null) {
                    q.Enqueue(node.left);
                }
                if (node.right != null) {
                    q.Enqueue(node.right);
                }
            }
        }
        return root;
    }
}

方法二:空间优化

方法一的空间复杂度较高,因为需要使用队列存储每一层的节点。我们可以使用常数空间来实现。

定义两个指针 \(prev\)\(next\),分别指向下一层的前一个节点和第一个节点。遍历当前层的节点时,把下一层的节点串起来,同时找到下一层的第一个节点。当前层遍历完后,把下一层的第一个节点 \(next\) 赋值给 \(node\),继续遍历。

时间复杂度 \(O(n)\),其中 \(n\) 为二叉树的节点个数。空间复杂度 \(O(1)\)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
"""
# Definition for a Node.
class Node:
    def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
        self.val = val
        self.left = left
        self.right = right
        self.next = next
"""


class Solution:
    def connect(self, root: 'Node') -> 'Node':
        def modify(curr):
            nonlocal prev, next
            if curr is None:
                return
            next = next or curr
            if prev:
                prev.next = curr
            prev = curr

        node = root
        while node:
            prev = next = None
            while node:
                modify(node.left)
                modify(node.right)
                node = node.next
            node = next
        return root
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    private Node prev, next;

    public Node connect(Node root) {
        Node node = root;
        while (node != null) {
            prev = null;
            next = null;
            while (node != null) {
                modify(node.left);
                modify(node.right);
                node = node.next;
            }
            node = next;
        }
        return root;
    }

    private void modify(Node curr) {
        if (curr == null) {
            return;
        }
        if (next == null) {
            next = curr;
        }
        if (prev != null) {
            prev.next = curr;
        }
        prev = curr;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
*/

class Solution {
public:
    Node* connect(Node* root) {
        Node* node = root;
        Node* prev = nullptr;
        Node* next = nullptr;
        auto modify = [&](Node* curr) {
            if (!curr) {
                return;
            }
            if (!next) {
                next = curr;
            }
            if (prev) {
                prev->next = curr;
            }
            prev = curr;
        };
        while (node) {
            prev = next = nullptr;
            while (node) {
                modify(node->left);
                modify(node->right);
                node = node->next;
            }
            node = next;
        }
        return root;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Left *Node
 *     Right *Node
 *     Next *Node
 * }
 */

func connect(root *Node) *Node {
    node := root
    var prev, next *Node
    modify := func(curr *Node) {
        if curr == nil {
            return
        }
        if next == nil {
            next = curr
        }
        if prev != nil {
            prev.Next = curr
        }
        prev = curr
    }
    for node != nil {
        prev, next = nil, nil
        for node != nil {
            modify(node.Left)
            modify(node.Right)
            node = node.Next
        }
        node = next
    }
    return root
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
 * Definition for Node.
 * class Node {
 *     val: number
 *     left: Node | null
 *     right: Node | null
 *     next: Node | null
 *     constructor(val?: number, left?: Node, right?: Node, next?: Node) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

function connect(root: Node | null): Node | null {
    const modify = (curr: Node | null): void => {
        if (!curr) {
            return;
        }
        next = next || curr;
        if (prev) {
            prev.next = curr;
        }
        prev = curr;
    };
    let node = root;
    let [prev, next] = [null, null];
    while (node) {
        while (node) {
            modify(node.left);
            modify(node.right);
            node = node.next;
        }
        node = next;
        [prev, next] = [null, null];
    }
    return root;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
// Definition for a Node.
public class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
}
*/

public class Solution {
    private Node prev, next;

    public Node Connect(Node root) {
        Node node = root;
        while (node != null) {
            prev = null;
            next = null;
            while (node != null) {
                modify(node.left);
                modify(node.right);
                node = node.next;
            }
            node = next;
        }
        return root;
    }

    private void modify(Node curr) {
        if (curr == null) {
            return;
        }
        if (next == null) {
            next = curr;
        }
        if (prev != null) {
            prev.next = curr;
        }
        prev = curr;
    }
}

评论

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy