跳转至

1856. 子数组最小乘积的最大值

题目描述

一个数组的 最小乘积 定义为这个数组中 最小值 乘以 数组的  。

  • 比方说,数组 [3,2,5] (最小值是 2)的最小乘积为 2 * (3+2+5) = 2 * 10 = 20 。

给你一个正整数数组 nums ,请你返回 nums 任意 非空子数组 的最小乘积 的 最大值 。由于答案可能很大,请你返回答案对  109 + 7 取余 的结果。

请注意,最小乘积的最大值考虑的是取余操作 之前 的结果。题目保证最小乘积的最大值在 不取余 的情况下可以用 64 位有符号整数 保存。

子数组 定义为一个数组的 连续 部分。

 

示例 1:

输入:nums = [1,2,3,2]
输出:14
解释:最小乘积的最大值由子数组 [2,3,2] (最小值是 2)得到。
2 * (2+3+2) = 2 * 7 = 14 。

示例 2:

输入:nums = [2,3,3,1,2]
输出:18
解释:最小乘积的最大值由子数组 [3,3] (最小值是 3)得到。
3 * (3+3) = 3 * 6 = 18 。

示例 3:

输入:nums = [3,1,5,6,4,2]
输出:60
解释:最小乘积的最大值由子数组 [5,6,4] (最小值是 4)得到。
4 * (5+6+4) = 4 * 15 = 60 。

 

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 107

解法

方法一:单调栈 + 前缀和

我们可以枚举每个元素 \(nums[i]\) 作为子数组的最小值,找出子数组的左右边界 \(left[i]\)\(right[i]\)。其中 \(left[i]\) 表示 \(i\) 左侧第一个严格小于 \(nums[i]\) 的位置,而 \(right[i]\) 表示 \(i\) 右侧第一个小于等于 \(nums[i]\) 的位置。

为了方便地算出子数组的和,我们可以预处理出前缀和数组 \(s\),其中 \(s[i]\) 表示 \(nums\)\(i\) 个元素的和。

那么以 \(nums[i]\) 作为子数组最小值的最小乘积为 \(nums[i] \times s[right[i]] - s[left[i] + 1]\)。我们可以枚举每个元素 \(nums[i]\),求出以 \(nums[i]\) 作为子数组最小值的最小乘积,然后取最大值即可。

时间复杂度 \(O(n)\),空间复杂度 \(O(n)\)。其中 \(n\) 为数组 \(nums\) 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution:
    def maxSumMinProduct(self, nums: List[int]) -> int:
        n = len(nums)
        left = [-1] * n
        right = [n] * n
        stk = []
        for i, x in enumerate(nums):
            while stk and nums[stk[-1]] >= x:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        stk = []
        for i in range(n - 1, -1, -1):
            while stk and nums[stk[-1]] > nums[i]:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        s = list(accumulate(nums, initial=0))
        mod = 10**9 + 7
        return max((s[right[i]] - s[left[i] + 1]) * x for i, x in enumerate(nums)) % mod
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Solution {
    public int maxSumMinProduct(int[] nums) {
        int n = nums.length;
        int[] left = new int[n];
        int[] right = new int[n];
        Arrays.fill(left, -1);
        Arrays.fill(right, n);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            while (!stk.isEmpty() && nums[stk.peek()] >= nums[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && nums[stk.peek()] > nums[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        long[] s = new long[n + 1];
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }
        long ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = Math.max(ans, nums[i] * (s[right[i]] - s[left[i] + 1]));
        }
        final int mod = (int) 1e9 + 7;
        return (int) (ans % mod);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Solution {
public:
    int maxSumMinProduct(vector<int>& nums) {
        int n = nums.size();
        vector<int> left(n, -1);
        vector<int> right(n, n);
        stack<int> stk;
        for (int i = 0; i < n; ++i) {
            while (!stk.empty() && nums[stk.top()] >= nums[i]) {
                stk.pop();
            }
            if (!stk.empty()) {
                left[i] = stk.top();
            }
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; ~i; --i) {
            while (!stk.empty() && nums[stk.top()] > nums[i]) {
                stk.pop();
            }
            if (!stk.empty()) {
                right[i] = stk.top();
            }
            stk.push(i);
        }
        long long s[n + 1];
        s[0] = 0;
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }
        long long ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = max(ans, nums[i] * (s[right[i]] - s[left[i] + 1]));
        }
        const int mod = 1e9 + 7;
        return ans % mod;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
func maxSumMinProduct(nums []int) int {
    n := len(nums)
    left := make([]int, n)
    right := make([]int, n)
    for i := range left {
        left[i] = -1
        right[i] = n
    }
    stk := []int{}
    for i, x := range nums {
        for len(stk) > 0 && nums[stk[len(stk)-1]] >= x {
            stk = stk[:len(stk)-1]
        }
        if len(stk) > 0 {
            left[i] = stk[len(stk)-1]
        }
        stk = append(stk, i)
    }
    stk = []int{}
    for i := n - 1; i >= 0; i-- {
        for len(stk) > 0 && nums[stk[len(stk)-1]] > nums[i] {
            stk = stk[:len(stk)-1]
        }
        if len(stk) > 0 {
            right[i] = stk[len(stk)-1]
        }
        stk = append(stk, i)
    }
    s := make([]int, n+1)
    for i, x := range nums {
        s[i+1] = s[i] + x
    }
    ans := 0
    for i, x := range nums {
        if t := x * (s[right[i]] - s[left[i]+1]); ans < t {
            ans = t
        }
    }
    const mod = 1e9 + 7
    return ans % mod
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
function maxSumMinProduct(nums: number[]): number {
    const n = nums.length;
    const left: number[] = Array(n).fill(-1);
    const right: number[] = Array(n).fill(n);
    const stk: number[] = [];
    for (let i = 0; i < n; ++i) {
        while (stk.length && nums[stk.at(-1)!] >= nums[i]) {
            stk.pop();
        }
        if (stk.length) {
            left[i] = stk.at(-1)!;
        }
        stk.push(i);
    }
    stk.length = 0;
    for (let i = n - 1; i >= 0; --i) {
        while (stk.length && nums[stk.at(-1)!] > nums[i]) {
            stk.pop();
        }
        if (stk.length) {
            right[i] = stk.at(-1)!;
        }
        stk.push(i);
    }
    const s: number[] = Array(n + 1).fill(0);
    for (let i = 0; i < n; ++i) {
        s[i + 1] = s[i] + nums[i];
    }
    let ans: bigint = 0n;
    const mod = 10 ** 9 + 7;
    for (let i = 0; i < n; ++i) {
        const t = BigInt(nums[i]) * BigInt(s[right[i]] - s[left[i] + 1]);
        if (ans < t) {
            ans = t;
        }
    }
    return Number(ans % BigInt(mod));
}

评论

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy