跳转至

425. 单词方块 🔒

题目描述

给定一个单词集合 words (没有重复),找出并返回其中所有的 单词方块 。 words 中的同一个单词可以被 多次 使用。你可以按 任意顺序 返回答案。

一个单词序列形成了一个有效的 单词方块 的意思是指从第 k 行和第 k 列  0 <= k < max(numRows, numColumns) 来看都是相同的字符串。

  • 例如,单词序列 ["ball","area","lead","lady"] 形成了一个单词方块,因为每个单词从水平方向看和从竖直方向看都是相同的。

 

示例 1:

输入:words = ["area","lead","wall","lady","ball"]
输出: [["ball","area","lead","lady"],
["wall","area","lead","lady"]]
解释:
输出包含两个单词方块,输出的顺序不重要,只需要保证每个单词方块内的单词顺序正确即可。 

示例 2:

输入:words = ["abat","baba","atan","atal"]
输出:[["baba","abat","baba","atal"],
["baba","abat","baba","atan"]]
解释:
输出包含两个单词方块,输出的顺序不重要,只需要保证每个单词方块内的单词顺序正确即可。 

 

提示:

  • 1 <= words.length <= 1000
  • 1 <= words[i].length <= 4
  • words[i] 长度相同
  • words[i] 只由小写英文字母组成
  • words[i] 都 各不相同

解法

方法一:前缀树 + DFS

根据已添加单词确定下一个单词的前缀,继续进行搜索。

比如已经添加了两个单词 \(ball\)\(area\),要添加下一个单词,我们首先要获取下一个单词的前缀,第一个字母是第一个单词的第三个位置 \(l\),第二个字母是第二个单词的第三个位置 \(e\),这样就构成了前缀 \(le\)。然后找出所有前缀为 \(le\) 的单词,作为下一个单词。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class Trie:
    def __init__(self):
        self.children = [None] * 26
        self.v = []

    def insert(self, w, i):
        node = self
        for c in w:
            idx = ord(c) - ord('a')
            if node.children[idx] is None:
                node.children[idx] = Trie()
            node = node.children[idx]
            node.v.append(i)

    def search(self, w):
        node = self
        for c in w:
            idx = ord(c) - ord('a')
            if node.children[idx] is None:
                return []
            node = node.children[idx]
        return node.v


class Solution:
    def wordSquares(self, words: List[str]) -> List[List[str]]:
        def dfs(t):
            if len(t) == len(words[0]):
                ans.append(t[:])
                return
            idx = len(t)
            pref = [v[idx] for v in t]
            indexes = trie.search(''.join(pref))
            for i in indexes:
                t.append(words[i])
                dfs(t)
                t.pop()

        trie = Trie()
        ans = []
        for i, w in enumerate(words):
            trie.insert(w, i)
        for w in words:
            dfs([w])
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
class Trie {
    Trie[] children = new Trie[26];
    List<Integer> v = new ArrayList<>();

    void insert(String word, int i) {
        Trie node = this;
        for (char c : word.toCharArray()) {
            c -= 'a';
            if (node.children[c] == null) {
                node.children[c] = new Trie();
            }
            node = node.children[c];
            node.v.add(i);
        }
    }

    List<Integer> search(String pref) {
        Trie node = this;
        for (char c : pref.toCharArray()) {
            c -= 'a';
            if (node.children[c] == null) {
                return Collections.emptyList();
            }
            node = node.children[c];
        }
        return node.v;
    }
}

class Solution {
    private Trie trie = new Trie();
    private String[] words;
    private List<List<String>> ans = new ArrayList<>();

    public List<List<String>> wordSquares(String[] words) {
        this.words = words;
        for (int i = 0; i < words.length; ++i) {
            trie.insert(words[i], i);
        }

        List<String> t = new ArrayList<>();
        for (String w : words) {
            t.add(w);
            dfs(t);
            t.remove(t.size() - 1);
        }
        return ans;
    }

    private void dfs(List<String> t) {
        if (t.size() == words[0].length()) {
            ans.add(new ArrayList<>(t));
            return;
        }
        int idx = t.size();
        StringBuilder pref = new StringBuilder();
        for (String x : t) {
            pref.append(x.charAt(idx));
        }
        List<Integer> indexes = trie.search(pref.toString());
        for (int i : indexes) {
            t.add(words[i]);
            dfs(t);
            t.remove(t.size() - 1);
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
type Trie struct {
    children [26]*Trie
    v        []int
}

func newTrie() *Trie {
    return &Trie{}
}
func (this *Trie) insert(word string, i int) {
    node := this
    for _, c := range word {
        c -= 'a'
        if node.children[c] == nil {
            node.children[c] = newTrie()
        }
        node = node.children[c]
        node.v = append(node.v, i)
    }
}
func (this *Trie) search(word string) []int {
    node := this
    for _, c := range word {
        c -= 'a'
        if node.children[c] == nil {
            return []int{}
        }
        node = node.children[c]
    }
    return node.v
}

func wordSquares(words []string) [][]string {
    trie := newTrie()
    for i, w := range words {
        trie.insert(w, i)
    }
    ans := [][]string{}
    var dfs func([]string)
    dfs = func(t []string) {
        if len(t) == len(words[0]) {
            cp := make([]string, len(t))
            copy(cp, t)
            ans = append(ans, cp)
            return
        }
        idx := len(t)
        pref := []byte{}
        for _, v := range t {
            pref = append(pref, v[idx])
        }
        indexes := trie.search(string(pref))
        for _, i := range indexes {
            t = append(t, words[i])
            dfs(t)
            t = t[:len(t)-1]
        }
    }
    for _, w := range words {
        dfs([]string{w})
    }
    return ans
}

评论

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy