跳转至

322. 零钱兑换

题目描述

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

 

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

 

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104

解法

方法一:动态规划(完全背包)

我们定义 \(f[i][j]\) 表示使用前 \(i\) 种硬币,凑出金额 \(j\) 的最少硬币数。初始时 \(f[0][0] = 0\),其余位置的值均为正无穷。

我们可以枚举使用的最后一枚硬币的数量 \(k\),那么有:

\[ f[i][j] = \min(f[i - 1][j], f[i - 1][j - x] + 1, \cdots, f[i - 1][j - k \times x] + k) \]

其中 \(x\) 表示第 \(i\) 种硬币的面值。

不妨令 \(j = j - x\),那么有:

\[ f[i][j - x] = \min(f[i - 1][j - x], f[i - 1][j - 2 \times x] + 1, \cdots, f[i - 1][j - k \times x] + k - 1) \]

将二式代入一式,我们可以得到以下状态转移方程:

\[ f[i][j] = \min(f[i - 1][j], f[i][j - x] + 1) \]

最后答案即为 \(f[m][n]\)

时间复杂度 \(O(m \times n)\),空间复杂度 \(O(m \times n)\)。其中 \(m\)\(n\) 分别为硬币的种类数和总金额。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        m, n = len(coins), amount
        f = [[inf] * (n + 1) for _ in range(m + 1)]
        f[0][0] = 0
        for i, x in enumerate(coins, 1):
            for j in range(n + 1):
                f[i][j] = f[i - 1][j]
                if j >= x:
                    f[i][j] = min(f[i][j], f[i][j - x] + 1)
        return -1 if f[m][n] >= inf else f[m][n]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
    public int coinChange(int[] coins, int amount) {
        final int inf = 1 << 30;
        int m = coins.length;
        int n = amount;
        int[][] f = new int[m + 1][n + 1];
        for (var g : f) {
            Arrays.fill(g, inf);
        }
        f[0][0] = 0;
        for (int i = 1; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                f[i][j] = f[i - 1][j];
                if (j >= coins[i - 1]) {
                    f[i][j] = Math.min(f[i][j], f[i][j - coins[i - 1]] + 1);
                }
            }
        }
        return f[m][n] >= inf ? -1 : f[m][n];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int m = coins.size(), n = amount;
        int f[m + 1][n + 1];
        memset(f, 0x3f, sizeof(f));
        f[0][0] = 0;
        for (int i = 1; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                f[i][j] = f[i - 1][j];
                if (j >= coins[i - 1]) {
                    f[i][j] = min(f[i][j], f[i][j - coins[i - 1]] + 1);
                }
            }
        }
        return f[m][n] > n ? -1 : f[m][n];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
func coinChange(coins []int, amount int) int {
    m, n := len(coins), amount
    f := make([][]int, m+1)
    const inf = 1 << 30
    for i := range f {
        f[i] = make([]int, n+1)
        for j := range f[i] {
            f[i][j] = inf
        }
    }
    f[0][0] = 0
    for i := 1; i <= m; i++ {
        for j := 0; j <= n; j++ {
            f[i][j] = f[i-1][j]
            if j >= coins[i-1] {
                f[i][j] = min(f[i][j], f[i][j-coins[i-1]]+1)
            }
        }
    }
    if f[m][n] > n {
        return -1
    }
    return f[m][n]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
function coinChange(coins: number[], amount: number): number {
    const m = coins.length;
    const n = amount;
    const f: number[][] = Array(m + 1)
        .fill(0)
        .map(() => Array(n + 1).fill(1 << 30));
    f[0][0] = 0;
    for (let i = 1; i <= m; ++i) {
        for (let j = 0; j <= n; ++j) {
            f[i][j] = f[i - 1][j];
            if (j >= coins[i - 1]) {
                f[i][j] = Math.min(f[i][j], f[i][j - coins[i - 1]] + 1);
            }
        }
    }
    return f[m][n] > n ? -1 : f[m][n];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
impl Solution {
    pub fn coin_change(coins: Vec<i32>, amount: i32) -> i32 {
        let n = amount as usize;
        let mut f = vec![n + 1; n + 1];
        f[0] = 0;
        for &x in &coins {
            for j in x as usize..=n {
                f[j] = f[j].min(f[j - (x as usize)] + 1);
            }
        }
        if f[n] > n {
            -1
        } else {
            f[n] as i32
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
 * @param {number[]} coins
 * @param {number} amount
 * @return {number}
 */
var coinChange = function (coins, amount) {
    const m = coins.length;
    const n = amount;
    const f = Array(m + 1)
        .fill(0)
        .map(() => Array(n + 1).fill(1 << 30));
    f[0][0] = 0;
    for (let i = 1; i <= m; ++i) {
        for (let j = 0; j <= n; ++j) {
            f[i][j] = f[i - 1][j];
            if (j >= coins[i - 1]) {
                f[i][j] = Math.min(f[i][j], f[i][j - coins[i - 1]] + 1);
            }
        }
    }
    return f[m][n] > n ? -1 : f[m][n];
};

我们注意到 \(f[i][j]\) 只与 \(f[i - 1][j]\)\(f[i][j - x]\) 有关,因此我们可以将二维数组优化为一维数组,空间复杂度降为 \(O(n)\)

相似题目:

1
2
3
4
5
6
7
8
class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        n = amount
        f = [0] + [inf] * n
        for x in coins:
            for j in range(x, n + 1):
                f[j] = min(f[j], f[j - x] + 1)
        return -1 if f[n] >= inf else f[n]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
    public int coinChange(int[] coins, int amount) {
        final int inf = 1 << 30;
        int n = amount;
        int[] f = new int[n + 1];
        Arrays.fill(f, inf);
        f[0] = 0;
        for (int x : coins) {
            for (int j = x; j <= n; ++j) {
                f[j] = Math.min(f[j], f[j - x] + 1);
            }
        }
        return f[n] >= inf ? -1 : f[n];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int n = amount;
        int f[n + 1];
        memset(f, 0x3f, sizeof(f));
        f[0] = 0;
        for (int x : coins) {
            for (int j = x; j <= n; ++j) {
                f[j] = min(f[j], f[j - x] + 1);
            }
        }
        return f[n] > n ? -1 : f[n];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
func coinChange(coins []int, amount int) int {
    n := amount
    f := make([]int, n+1)
    for i := range f {
        f[i] = 1 << 30
    }
    f[0] = 0
    for _, x := range coins {
        for j := x; j <= n; j++ {
            f[j] = min(f[j], f[j-x]+1)
        }
    }
    if f[n] > n {
        return -1
    }
    return f[n]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
function coinChange(coins: number[], amount: number): number {
    const n = amount;
    const f: number[] = Array(n + 1).fill(1 << 30);
    f[0] = 0;
    for (const x of coins) {
        for (let j = x; j <= n; ++j) {
            f[j] = Math.min(f[j], f[j - x] + 1);
        }
    }
    return f[n] > n ? -1 : f[n];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
/**
 * @param {number[]} coins
 * @param {number} amount
 * @return {number}
 */
var coinChange = function (coins, amount) {
    const n = amount;
    const f = Array(n + 1).fill(1 << 30);
    f[0] = 0;
    for (const x of coins) {
        for (let j = x; j <= n; ++j) {
            f[j] = Math.min(f[j], f[j - x] + 1);
        }
    }
    return f[n] > n ? -1 : f[n];
};

评论

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy