跳转至

538. 把二叉搜索树转换为累加树

题目描述

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。
  • 节点的右子树仅包含键 大于 节点键的节点。
  • 左右子树也必须是二叉搜索树。

注意:本题和 1038: https://leetcode.cn/problems/binary-search-tree-to-greater-sum-tree/ 相同

 

示例 1:

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]
输出:[1,null,1]

示例 3:

输入:root = [1,0,2]
输出:[3,3,2]

示例 4:

输入:root = [3,2,4,1]
输出:[7,9,4,10]

 

提示:

  • 树中的节点数介于 0 和 104 之间。
  • 每个节点的值介于 -104 和 104 之间。
  • 树中的所有值 互不相同
  • 给定的树为二叉搜索树。

解法

方法一:递归

按照“右根左”的顺序,递归遍历二叉搜索树,累加遍历到的所有节点值到 \(s\) 中,然后每次赋值给对应的 node 节点。

时间复杂度 \(O(n)\),空间复杂度 \(O(n)\)。其中 \(n\) 是二叉搜索树的节点数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def convertBST(self, root: TreeNode) -> TreeNode:
        def dfs(root):
            nonlocal s
            if root is None:
                return
            dfs(root.right)
            s += root.val
            root.val = s
            dfs(root.left)

        s = 0
        dfs(root)
        return root
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private int s;

    public TreeNode convertBST(TreeNode root) {
        dfs(root);
        return root;
    }

    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        dfs(root.right);
        s += root.val;
        root.val = s;
        dfs(root.left);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int s = 0;

    TreeNode* convertBST(TreeNode* root) {
        dfs(root);
        return root;
    }

    void dfs(TreeNode* root) {
        if (!root) return;
        dfs(root->right);
        s += root->val;
        root->val = s;
        dfs(root->left);
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func convertBST(root *TreeNode) *TreeNode {
    s := 0
    var dfs func(*TreeNode)
    dfs = func(root *TreeNode) {
        if root == nil {
            return
        }
        dfs(root.Right)
        s += root.Val
        root.Val = s
        dfs(root.Left)
    }
    dfs(root)
    return root
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {TreeNode}
 */
var convertBST = function (root) {
    let s = 0;
    function dfs(root) {
        if (!root) {
            return;
        }
        dfs(root.right);
        s += root.val;
        root.val = s;
        dfs(root.left);
    }
    dfs(root);
    return root;
};

方法二:Morris 遍历

Morris 遍历无需使用栈,时间复杂度 \(O(n)\),空间复杂度为 \(O(1)\)。核心思想是:

定义 s 表示二叉搜索树节点值累加和。遍历二叉树节点:

  1. 若当前节点 root 的右子树为空,将当前节点值添加至 s 中,更新当前节点值为 s,并将当前节点更新为 root.left
  2. 若当前节点 root 的右子树不为空,找到右子树的最左节点 next(也即是 root 节点在中序遍历下的后继节点):
    • 若后继节点 next 的左子树为空,将后继节点的左子树指向当前节点 root,并将当前节点更新为 root.right
    • 若后继节点 next 的左子树不为空,将当前节点值添加 s 中,更新当前节点值为 s,然后将后继节点左子树指向空(即解除 next 与 root 的指向关系),并将当前节点更新为 root.left
  3. 循环以上步骤,直至二叉树节点为空,遍历结束。
  4. 最后返回二叉搜索树根节点即可。

Morris 反序中序遍历跟 Morris 中序遍历思路一致,只是将中序遍历的“左根右”变为“右根左”。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def convertBST(self, root: TreeNode) -> TreeNode:
        s = 0
        node = root
        while root:
            if root.right is None:
                s += root.val
                root.val = s
                root = root.left
            else:
                next = root.right
                while next.left and next.left != root:
                    next = next.left
                if next.left is None:
                    next.left = root
                    root = root.right
                else:
                    s += root.val
                    root.val = s
                    next.left = None
                    root = root.left
        return node
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode convertBST(TreeNode root) {
        int s = 0;
        TreeNode node = root;
        while (root != null) {
            if (root.right == null) {
                s += root.val;
                root.val = s;
                root = root.left;
            } else {
                TreeNode next = root.right;
                while (next.left != null && next.left != root) {
                    next = next.left;
                }
                if (next.left == null) {
                    next.left = root;
                    root = root.right;
                } else {
                    s += root.val;
                    root.val = s;
                    next.left = null;
                    root = root.left;
                }
            }
        }
        return node;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* convertBST(TreeNode* root) {
        int s = 0;
        TreeNode* node = root;
        while (root) {
            if (root->right == nullptr) {
                s += root->val;
                root->val = s;
                root = root->left;
            } else {
                TreeNode* next = root->right;
                while (next->left && next->left != root) {
                    next = next->left;
                }
                if (next->left == nullptr) {
                    next->left = root;
                    root = root->right;
                } else {
                    s += root->val;
                    root->val = s;
                    next->left = nullptr;
                    root = root->left;
                }
            }
        }
        return node;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func convertBST(root *TreeNode) *TreeNode {
    s := 0
    node := root
    for root != nil {
        if root.Right == nil {
            s += root.Val
            root.Val = s
            root = root.Left
        } else {
            next := root.Right
            for next.Left != nil && next.Left != root {
                next = next.Left
            }
            if next.Left == nil {
                next.Left = root
                root = root.Right
            } else {
                s += root.Val
                root.Val = s
                next.Left = nil
                root = root.Left
            }
        }
    }
    return node
}

评论

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy