跳转至

589. N 叉树的前序遍历

题目描述

给定一个 n 叉树的根节点  root ,返回 其节点值的 前序遍历

n 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。


示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:[1,3,5,6,2,4]

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:[1,2,3,6,7,11,14,4,8,12,5,9,13,10]

 

提示:

  • 节点总数在范围 [0, 104]
  • 0 <= Node.val <= 104
  • n 叉树的高度小于或等于 1000

 

进阶:递归法很简单,你可以使用迭代法完成此题吗?

解法

方法一:递归

我们可以递归地遍历整棵树。对于每个节点,先将节点的值加入答案,然后对该节点的每个子节点递归地调用函数。

时间复杂度 \(O(n)\),空间复杂度 \(O(n)\)。其中 \(n\) 为节点数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""


class Solution:
    def preorder(self, root: "Node") -> List[int]:
        def dfs(root):
            if root is None:
                return
            ans.append(root.val)
            for child in root.children:
                dfs(child)

        ans = []
        dfs(root)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    private List<Integer> ans = new ArrayList<>();

    public List<Integer> preorder(Node root) {
        dfs(root);
        return ans;
    }

    private void dfs(Node root) {
        if (root == null) {
            return;
        }
        ans.add(root.val);
        for (Node child : root.children) {
            dfs(child);
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    vector<int> preorder(Node* root) {
        vector<int> ans;
        function<void(Node*)> dfs = [&](Node* root) {
            if (!root) {
                return;
            }
            ans.push_back(root->val);
            for (auto& child : root->children) {
                dfs(child);
            }
        };
        dfs(root);
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func preorder(root *Node) (ans []int) {
    var dfs func(*Node)
    dfs = func(root *Node) {
        if root == nil {
            return
        }
        ans = append(ans, root.Val)
        for _, child := range root.Children {
            dfs(child)
        }
    }
    dfs(root)
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
 * Definition for node.
 * class Node {
 *     val: number
 *     children: Node[]
 *     constructor(val?: number) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.children = []
 *     }
 * }
 */

function preorder(root: Node | null): number[] {
    const ans: number[] = [];
    const dfs = (root: Node | null) => {
        if (!root) {
            return;
        }
        ans.push(root.val);
        for (const child of root.children) {
            dfs(child);
        }
    };
    dfs(root);
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/**
 * Definition for a Node.
 * struct Node {
 *     int val;
 *     int numChildren;
 *     struct Node** children;
 * };
 */

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

void dfs(struct Node* root, int* ans, int* i) {
    if (!root) {
        return;
    }
    ans[(*i)++] = root->val;
    for (int j = 0; j < root->numChildren; j++) {
        dfs(root->children[j], ans, i);
    }
}

int* preorder(struct Node* root, int* returnSize) {
    int* ans = malloc(sizeof(int) * 10000);
    *returnSize = 0;
    dfs(root, ans, returnSize);
    return ans;
}

方法二:迭代(栈实现)

我们也可以用迭代的方法来解决这个问题。

我们使用一个栈来帮助我们得到前序遍历,我们首先把根节点入栈,因为前序遍历是根节点、左子树、右子树,栈的特点是先进后出,所以我们先把节点的值加入答案,然后对该节点的每个子节点按照从右到左的顺序依次入栈。循环直到栈为空。

时间复杂度 \(O(n)\),空间复杂度 \(O(n)\)。其中 \(n\) 为节点数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""


class Solution:
    def preorder(self, root: 'Node') -> List[int]:
        ans = []
        if root is None:
            return ans
        stk = [root]
        while stk:
            node = stk.pop()
            ans.append(node.val)
            for child in node.children[::-1]:
                stk.append(child)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public List<Integer> preorder(Node root) {
        if (root == null) {
            return Collections.emptyList();
        }
        List<Integer> ans = new ArrayList<>();
        Deque<Node> stk = new ArrayDeque<>();
        stk.push(root);
        while (!stk.isEmpty()) {
            Node node = stk.pop();
            ans.add(node.val);
            List<Node> children = node.children;
            for (int i = children.size() - 1; i >= 0; --i) {
                stk.push(children.get(i));
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    vector<int> preorder(Node* root) {
        if (!root) return {};
        vector<int> ans;
        stack<Node*> stk;
        stk.push(root);
        while (!stk.empty()) {
            Node* node = stk.top();
            ans.push_back(node->val);
            stk.pop();
            auto children = node->children;
            for (int i = children.size() - 1; i >= 0; --i) stk.push(children[i]);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func preorder(root *Node) (ans []int) {
    if root == nil {
        return
    }
    stk := []*Node{root}
    for len(stk) > 0 {
        node := stk[len(stk)-1]
        ans = append(ans, node.Val)
        stk = stk[:len(stk)-1]
        children := node.Children
        for i := len(children) - 1; i >= 0; i-- {
            stk = append(stk, children[i])
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * Definition for node.
 * class Node {
 *     val: number
 *     children: Node[]
 *     constructor(val?: number) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.children = []
 *     }
 * }
 */

function preorder(root: Node | null): number[] {
    const ans: number[] = [];
    if (!root) {
        return ans;
    }
    const stk: Node[] = [root];
    while (stk.length) {
        const { val, children } = stk.pop()!;
        ans.push(val);
        for (let i = children.length - 1; i >= 0; i--) {
            stk.push(children[i]);
        }
    }
    return ans;
}

评论

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy