跳转至

1260. 二维网格迁移

题目描述

给你一个 mn 列的二维网格 grid 和一个整数 k。你需要将 grid 迁移 k 次。

每次「迁移」操作将会引发下述活动:

  • 位于 grid[i][j]j < n - 1)的元素将会移动到 grid[i][j + 1]
  • 位于 grid[i][n - 1] 的元素将会移动到 grid[i + 1][0]
  • 位于 grid[m - 1][n - 1] 的元素将会移动到 grid[0][0]

请你返回 k 次迁移操作后最终得到的 二维网格

 

示例 1:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[9,1,2],[3,4,5],[6,7,8]]

示例 2:

输入:grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
输出:[[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]

示例 3:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9
输出:[[1,2,3],[4,5,6],[7,8,9]]

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m <= 50
  • 1 <= n <= 50
  • -1000 <= grid[i][j] <= 1000
  • 0 <= k <= 100

解法

方法一:二维数组展开

根据题目描述,如果我们将二维数组展开成一维数组,那么每次迁移操作就是将数组中的元素向右移动一个位置,最后一个元素移动到数组的首位。

因此,我们可以将二维数组展开成一维数组,然后计算每个元素在最后的位置 \(idx = (x, y)\),更新答案数组 ans[x][y] = grid[i][j] 即可。

时间复杂度 \(O(m \times n)\),其中 \(m\)\(n\) 分别是二维数组 grid 的行数和列数。需要遍历二维数组 grid 一次,计算每个元素在最后的位置。忽略答案数组的空间消耗,空间复杂度 \(O(1)\)

1
2
3
4
5
6
7
8
9
class Solution:
    def shiftGrid(self, grid: List[List[int]], k: int) -> List[List[int]]:
        m, n = len(grid), len(grid[0])
        ans = [[0] * n for _ in range(m)]
        for i, row in enumerate(grid):
            for j, v in enumerate(row):
                x, y = divmod((i * n + j + k) % (m * n), n)
                ans[x][y] = v
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
    public List<List<Integer>> shiftGrid(int[][] grid, int k) {
        int m = grid.length, n = grid[0].length;
        List<List<Integer>> ans = new ArrayList<>();
        for (int i = 0; i < m; ++i) {
            List<Integer> row = new ArrayList<>();
            for (int j = 0; j < n; ++j) {
                row.add(0);
            }
            ans.add(row);
        }
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int idx = (i * n + j + k) % (m * n);
                int x = idx / n, y = idx % n;
                ans.get(x).set(y, grid[i][j]);
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
public:
    vector<vector<int>> shiftGrid(vector<vector<int>>& grid, int k) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> ans(m, vector<int>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int idx = (i * n + j + k) % (m * n);
                int x = idx / n, y = idx % n;
                ans[x][y] = grid[i][j];
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
func shiftGrid(grid [][]int, k int) [][]int {
    m, n := len(grid), len(grid[0])
    ans := make([][]int, m)
    for i := range ans {
        ans[i] = make([]int, n)
    }
    for i := 0; i < m; i++ {
        for j := 0; j < n; j++ {
            idx := (i*n + j + k) % (m * n)
            x, y := idx/n, idx%n
            ans[x][y] = grid[i][j]
        }
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
function shiftGrid(grid: number[][], k: number): number[][] {
    const [m, n] = [grid.length, grid[0].length];
    const ans: number[][] = Array.from({ length: m }, () => Array.from({ length: n }, () => 0));
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            const idx = (i * n + j + k) % (m * n);
            const [x, y] = [Math.floor(idx / n), idx % n];
            ans[x][y] = grid[i][j];
        }
    }
    return ans;
}

评论

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy