跳转至

519. 随机翻转矩阵

题目描述

给你一个 m x n 的二元矩阵 matrix ,且所有值被初始化为 0 。请你设计一个算法,随机选取一个满足 matrix[i][j] == 0 的下标 (i, j) ,并将它的值变为 1 。所有满足 matrix[i][j] == 0 的下标 (i, j) 被选取的概率应当均等。

尽量最少调用内置的随机函数,并且优化时间和空间复杂度。

实现 Solution 类:

  • Solution(int m, int n) 使用二元矩阵的大小 mn 初始化该对象
  • int[] flip() 返回一个满足 matrix[i][j] == 0 的随机下标 [i, j] ,并将其对应格子中的值变为 1
  • void reset() 将矩阵中所有的值重置为 0

 

示例:

输入
["Solution", "flip", "flip", "flip", "reset", "flip"]
[[3, 1], [], [], [], [], []]
输出
[null, [1, 0], [2, 0], [0, 0], null, [2, 0]]

解释
Solution solution = new Solution(3, 1);
solution.flip();  // 返回 [1, 0],此时返回 [0,0]、[1,0] 和 [2,0] 的概率应当相同
solution.flip();  // 返回 [2, 0],因为 [1,0] 已经返回过了,此时返回 [2,0] 和 [0,0] 的概率应当相同
solution.flip();  // 返回 [0, 0],根据前面已经返回过的下标,此时只能返回 [0,0]
solution.reset(); // 所有值都重置为 0 ,并可以再次选择下标返回
solution.flip();  // 返回 [2, 0],此时返回 [0,0]、[1,0] 和 [2,0] 的概率应当相同

 

提示:

  • 1 <= m, n <= 104
  • 每次调用flip 时,矩阵中至少存在一个值为 0 的格子。
  • 最多调用 1000flipreset 方法。

解法

方法一

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution:
    def __init__(self, m: int, n: int):
        self.m = m
        self.n = n
        self.total = m * n
        self.mp = {}

    def flip(self) -> List[int]:
        self.total -= 1
        x = random.randint(0, self.total)
        idx = self.mp.get(x, x)
        self.mp[x] = self.mp.get(self.total, self.total)
        return [idx // self.n, idx % self.n]

    def reset(self) -> None:
        self.total = self.m * self.n
        self.mp.clear()


# Your Solution object will be instantiated and called as such:
# obj = Solution(m, n)
# param_1 = obj.flip()
# obj.reset()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
    private int m;
    private int n;
    private int total;
    private Random rand = new Random();
    private Map<Integer, Integer> mp = new HashMap<>();

    public Solution(int m, int n) {
        this.m = m;
        this.n = n;
        this.total = m * n;
    }

    public int[] flip() {
        int x = rand.nextInt(total--);
        int idx = mp.getOrDefault(x, x);
        mp.put(x, mp.getOrDefault(total, total));
        return new int[] {idx / n, idx % n};
    }

    public void reset() {
        total = m * n;
        mp.clear();
    }
}

/**
 * Your Solution object will be instantiated and called as such:
 * Solution obj = new Solution(m, n);
 * int[] param_1 = obj.flip();
 * obj.reset();
 */

评论

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy